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Abstract

Solar technology already boasts a century of research and development, requires no toxic fuel and rel-
atively little maintenance, is inexhaustible and with adequate financial support, is capable of becoming
directly competitive with conventional technologies in many fields. These attributes make solar energy
one of the most promising sources for many current and future energy needs.

In this study, an experimental solar hot water generator, consisting of a cylindrical concentrator, an
absorber, a heat exchanger, a water store, a pump and a control unit has been constructed and tested in
order to establish the thermodynamic efficiency of the system.

Experimental data were obtained and used to train an artificial neural network in order to implement a
mapping between easily measurable features such as environmental conditions, input and output water
temperatures, solar radiation and flow rate of hot water.
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Nomenclature

a real value

A surface area of the reflecting mirror (m?)

A, absorber surface area (m?)

C concentration ratio

Cp constant pressure specific heat of the water (kJ/kgK)

Iy, direct radiation (W/m?)

m mass flow rate (kg/s)

ME  mean square error

MRE mean relative error

p predicted value

T.in Inlet temperature of water (°C)
Ti.out outlet temperature of water (°C)
nd thermal efficiency of the system

1. Introduction

After the energy crises of the 1970s and the subsequent increases in the cost of petroleum-based
fuels, interest in active solar energy systems surged. Increasing of energy needs and decreasing of
the fossil based energy sources, accelerates the researches for the alternative energy resources.
Thousands of systems were installed from the late 1970s through middle 1980s. Alternative energy
resources are far less polluting than traditional fuels, although they may have other drawbacks.
The great feature of solar energy is the fact that it is likely to continue to exist so far into the fu-
ture that we can think of it as being unending. Sunlight can be concentrated by solar collectors.
For many applications it is desirable to deliver energy at temperatures higher than those possible
with flat-plate collectors. Energy delivery temperatures can be increased by decreasing the area
from which heat losses occur. Many designs have been set forth for concentrating collectors.

Studies about concentrating collectors sped up in early 1970s by the oil crisis. Thomas and
Giiven investigated the thermal analysis of the cylindrical and parabolic concentrator and optic
errors related to manufacturing [1]. Halici has evaluated the performance of the concentrating col-
lectors having a constant absorber [2]. Odeh and coworkers have produced steam by using syn-
thetic oil as a working fluid in a parabolic type reflector in 1997. The produced steam was used
to work a Rankine turbine and its efficiency and thermal loss were calculated [3]. Kalogirou, in
his experimental study, has produced steam in a low temperature with a parabolic focuser and
worked on the system design and performance characteristics [4]. In these studies the parabolic
reflector and absorber in the focus are tracing the sun light in together. In the present study, focus
surface is kept fixed, and the cylindrical reflector traces the solar rays.

Solar thermal systems convert sunlight into heat. Flat-plate solar thermal collectors produce
heat at relatively low temperatures (27-60°C), and are generally used to heat air or a liquid for
space and water heating or drying agricultural products. Concentrated collectors achieve higher
temperatures by using a concentrating reflector to direct sunlight from a large area to a smaller
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receiver and absorber area. A liquid is pumped through the absorber, where it is heated and then
sent to a storage system or used directly for heating. Concentrating collectors work best in cli-
mates that have a high amount of direct solar radiation. They do not function as well on cloudy
days, when available solar radiation is mostly diffuse. The available, the size of the reflector, how
well they concentrate solar energy on to the receiver, the characteristics of absorber, and the con-
trol of the flow rate of the heat transfer fluid.

A concentrating collector system can have a fixed or stationary collector, or it can track the sun.
In stationary systems the reflector and absorber are in a fixed position, usually oriented directly
true south. Tracking devices shift the position of the reflector and the receiver to maximize the
amount of sunlight concentrated on the receiver. Tracking collectors are either single-axis or dou-
ble-axis. The entire collector, containing the reflector and receiver, generally moves as a unit in
both types. Systems with dual-axis tracking concentrate solar energy the most and therefore pro-
duce the highest temperatures, but are the most complex and expensive.

The purpose of using ANN is making use of data we have to predict the results of other data.
Additional working hours and costs are not beaded at ANN. At this topic, there is limited number
of studies. Using his experimental study, Kalogirou generated steam at parabolic collector and by
using ANN he made system design and modeling, and he predicted regional concentration ratio
and intercept factor. And he studied on performance prediction and modeling of water heating
systems with solar energy [5].

In this experimental study, applicability and restrictions were researched by ANN modeling
and a study for producing very hot water from solar energy. Finally, for different network en-
trances flow rates and efficiency changes are investigated.

2. Experimental setup

The experiments are performed in Denizli region, Turkey. The specifications of the experimen-
tal setup are shown in Table 1. The experimental set is based on 8 float mirrors placed on 2 dif-
ferent axes. Total area of the mirrors is 54m?. The mirrors located in two rows, can trace the sun
automatically. The distance of the cylindrical surfaced mirrors to the focus point is 12m. As seen
in Figs. 1 and 2 the cross-sectional view of the reflector is nearly straight. The reason for this sit-
uation is because of the rate of the focus distance to the linear semi space is relatively large. This

Table 1

Experimental setup specifications

Item Value/type

Number of collectors 2x4

Dimensions of collectors 3.20m x 2.11m each
Total area of collectors 54m?

Focal length 12m

System lay out direction North-south

Type of system Polar

Mode of tracking East-—west
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Fig. 1. Experimental set of fixed focused cylindrical concentrator.

also indicates that our experimental set is paraxial. Cylindrical surface is accepted as a parabolic
surface inside the paraxial area.

To locate the mirrors in the system, 8 float box made from cylindrical steel profile was con-
structed with the dimensions 2.3m width and 3.4m length. System is located from north to south
direction and tracing the sun with one axis in the west—east direction. The system is placed hor-
izontally with latitude angle (37.5°) of this region, so this is the polar system. The picture of the
experimental set is given in Fig. 2. In the system, the reflector mirrors are tracing the sun and in
the other side absorber ones are stay fixed.

The absorber is designed as a floating structure, which consists of five steel boxes containing 20
pieces of steel tubes with 8 mm diameter. Because of the fluctuation of the angles of the solar rays
with seasons changing, the length of the absorber had to be lengthened 0.5m on both ends and it
became 14m long.

To avoid the oxidation of the tubes inside the emitter, softened water with low oxidation prop-
erty is used. The water is delivered again to the absorber by a pump after the heat of the very hot
water recovered in the heat exchanger.

During the experiment, the solar radiation has been measured by a Kippzonen type pyranom-
eter. The pyranometer is located on the mirrors. Total radiation and the amount of intellect solar
radiation is measured in every 15min. The wind velocity, surrounding temperature, water inlet
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Fig. 2. Picture of the experimental set.

temperature to the absorber, and the temperature of the stored water are measured simultane-
ously with solar radiation. The amount of the very hot water is measured by weighing. The pres-
sure of the very hot water is measured with a manometer.

3. Artificial neural networks (ANN)

Artificial neural networks (ANNs) mimic somewhat the learning process of a human brain. In-
stead of complex rules and mathematical routines, ANNs are able to learn the key information
patterns within a multi-dimensional information domain. In addition, inherently noisy data do
not seem to present a problem, because neural networks are tolerant to noise variations. One
of the early applications of ANNSs, that worked successfully for more than 25years, dealt with
adaptive filtering for noise reduction developed by Widrow [5,6]. It is widely used in technical ro-
bot design, control mechanisms, telecommunication, weather forecasting, medicine industry,
manufacturing and planning, material sciences and power systems. ANN is also used in modeling
the energy systems in recent years.

Artificial neural networks differ from traditional simulation approaches in that they are trained
to learn solutions rather than being programmed to model a specific problem in the normal way.
A neural network consists of a number of processing elements (neurons), each of which have
many inputs but only one output. In a typical network there are three layers of neurons, i.e., input
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layer, which receives input from the outside world, hidden layer or layers which receive inputs
from the input layer neurons and the output layer which receives inputs from the hidden layers
and passes its output to the outside world and in some cases back to the preceding layers. The
strength of the network lies in the interconnections between the neurons, which is modified during
training. The training is done by exposing the network to a specific data set of information and by
applying a training algorithm to enable the network to produce the desired output [7].

The most popular learning algorithms are back-propagation and its variants. The back-prop-
agation (BP) algorithm is one of the most powerful learning algorithms in neural-networks. The
training of all patterns of a training data set is called an epoch. The training set has to be a rep-
resentative collection of input—output examples. Back-propagation training is a gradient-descent
algorithm. It tries to improve the performance of the neural-network by reducing the total error
by changing weights along its gradient [5].

In this study, a program called “Back Propagation-BP”’ whose mathematical basis is defined in
the literature [8—11] is used to build the algorithm. This algorithm can make a good recognize,
classification and generalization, and also a good model to set good connection with input and
output. Learning algorithm is an iterative allocation algorithm, it can minimize the average error
between the real (actual) output and the output which is wanted to be predicted by taking the
square of the average of errors. After the learning level most appropriate values are saved and
then new output and input values are wanted. Until the square of the error between the real (ac-
tual) values introduced to the network and the predicted values obtained in the output of the net-
work, is minimized, the iteration can be continued by changing the weights between the neurons.

The data obtained from experiments (in Denizli region), the ambient temperature, ambient
wind speed, the inlet temperature and the radiation on the mirrors, are the input values. The out-
put value is the mass flow rate. A sigmoid function is used as transfer function. Because of the
property of this function all the input data is normalized between 0 and 1 by using the equation:

N/:(N_Nmin)/(Nmax_Nmin) (1)

where Ny and Ny, respectively, indicate the largest and smallest value of NV, and N’ the unified
value of corresponding N. In selecting the optimum network parameters (learning rate, momen-
tum coefficient, neuron number in hidden layer and iteration number) the program looks for the
conditions where

1 n
ME =3 Ja—p| )
i=1

Mean square error is minimum. Here, “n” is the number of the data, “a” is actual (desired) value,
€C_ 99

p” is the predicted value. To evaluate the network performance “mean relative error’ is calcu-
lated can be expressed as

1 & |ai — p;| x 100
MRE =-—- _—
P 3

a;

The experimental data, collected from the 32 experimental measurements, have been used to
train a number of artificial neural-networks. From a total of 32 experimental measurements, 6
were randomly selected to be used as test patterns and the remaining 26 were used for training
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the network. To determine the optimum network parameters, the learning rate and momentum
values are tested between 0.1 and 0.9, the neuron number in the hidden layer is tested between
2 and 7 and relative mean error is calculated for each of them. After many trials optimum network
parameters are found; the learning rate is 0.75 and momentum rate is 0.85 and the neuron number
at hidden layer is 7.

4. Experimental study

The experiment has started on September 10th of 2002 at 09:00 and ended the same day at
17:00. At the experiment, to measure the temperature, solar radiation, pressure and speed of wind,
sensitive thermometer, pyranometer, manometer and ananometer is used consequently. The mass
flow is measured by weight and in 15min periods together with the other measurements. The value
of the flow rate is calculated as a quantity by making measurements in 15min periods.

Concentration ratios the one of the most important parameters in the collectors which is con-
centrating the solar radiation. Concentration ratio is the rate of the space area to the area of the
absorber surface.

A
C=— 4
o @
At the above relation, C stands for the concentration ratio, A, for the absorber surface area
(m?), and A, for the surface area (m?) of the reflecting mirror [12].
The amount of heat transferred to the water at the absorber surface is calculated by the
equation

Qs = mcp(Tr-in - Tr-out) (5)

At the flat-plate collectors global radiation is used, however at the concentrated collectors di-
rect radiation is used. For this calculation, the amount of the solar radiation coming to the mirror
surface is calculated by using the values from the monthly average measurements of Meteorology
of the Denizli region.

Thermal efficiency according to the direct radiation is the ratio of the amount of the heat trans-
ferred to the water with the direct solar radiation coming to the reflector surface

_ 0
[drAc

is calculated.

At the beginning the direct solar radiation value coming through the mirrors is 475 W/m? but in
the noon times it reaches to its maximum value of 902 W/m? as shown in Fig. 3. This value de-
creases in the evening at 17:00 to the value 590 W/m?. The very hot water is weighted as the col-
lected water amount after leaving the heat exchanger for 15min. The amount of the very hot water
is 80I/h and maximum value is 2701/h. And again the amount of the ambient temperature is
23.5°C and then it was observed that it increases to the value 32°C.

The wind velocity must be taken into account since it is one of the major loss sources of the
absorber radiation. During the experiment, the wind velocity of the ambient during the day is

N4 (6)
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Fig. 3. Experimental set with direct solar radiation and efficiency graph of values obtained by ANN.

changing in between the values 2 and 5.5m/sn. The very hot water is collected inside a storage as
to resend it to the system. Because of the re-sending the same water from this storage to the sys-
tem, at the beginning the temperature is 24°C, then it increases to 50°C at the end of the
experiment.

Another experiment is established on May 10th of 1999 in Ankara [3]. In this experiment set,
focal distance has 6 and 2m aperture length. Ambient temperature varies between 14 and 24°C.
The flow out temperature of the water from the absorber is minimum 30°C and it increases to
68.5°C at the end of the experiment. As seen on Fig. 3, at the experiment direct radiation is
381 W/m? at 09:00. It increases to 819 W/m? at 13:00, and decreases to 386 W/m? at 17:00.

5. Application of the artificial neural-network

In the experiment ambient temperature, wind velocity, temperature to the entrance to absorber,
amount of received radiation and obtained flow rate of hot water are calculated consequently. If
we use these data with ANN, what will be the flow rate we can obtain in an experiment in different
date and environment. From 32 experiment data, 26 data is given to the learning set, and ran-
domly selected 6 data is given to the test set. In order to determine optimum network parameters,
learning ratios and momentum coefficients between 0.1 and 0.9 are tried for every value between 2
and 7 of neurons at the hidden layer.

For the experimental data like inlet temperature to input layer, ambient temperature, inlet tem-
perature into the absorber, wind velocity and direct radiation, 4 is entered. For the hidden layer
where the weights affecting the calculations are processed, 7 is entered as a consequence of trial
and error. As output value, for the flow rate and useful heat quantity, 2 is entered. After a few
trials learning rate is taken 0.80 and momentum rate is taken 0.85 and calculations are done with
these values. At the learning set, the error iteration was high at the beginning and because of that
iteration process was repeated until minimum error was reached. Iteration process was completed
at 10,000. At the learning set, mean relative error was 0.0016 at the beginning. After the iteration
process was repeated for several times, this error has decreased suddenly, and it has become stable
after 8000. The mean relative error takes the value 0.02% after the iteration process. This shows
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Fig. 4. Error ratios of values measured and predicted from test data.
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that, the tested values are learned to be enough by the program and the error is in the acceptable
level. Furthermore, the iteratively given 6 test values, tested and predicted values are over one line
as in Fig. 4. For mass flow, maximum error ratio is 3.6% and mean relative error ratio is 1.2%.
Maximum error ratio for the heat transferred to the water is 6.2% and mean relative error ratio
is 3.9%. Mean relative ratio for experimental data at ANN program learning set is 7.1% and max-
imum error ratio is maximum 0.87%. For the rate of heat transfer, mean relative error is 9.1% and
maximum error ratio is 1.1%. Afterwards, data from another experiment which has different
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ambient temperature and direct solar radiation values, are given to the system for testing and re-
sults according to these data are obtained. These data belonging to the second experiment are gi-
ven to the program for prediction of the flow rate and heat quantity. As shown in Figs. 4 and 5,
ANN can predict the flow rate ratio and heat quantity to transferred to the water with small error
differences.

6. Results

Fig. 6 represents the variation of the system efficiency with the time. In this figure, the system
reaches to the maximum efficiency of 40% according to the direct radiation. This efficiency de-
creased to the value 15% in the morning and evening hours. The most obvious negative factors
over the efficiency are the overshadowing of two mirrors to each other, the overshadowing of
the concentrator to the system in the noon hours and overshadowing of the construction over
the mirror. Beside these, cloudy and windy weather is negatively effecting to the efficiency in this
open environment experiment, even though the experiment was done in an open-windly weather.
The wind velocity do not reach to the value of 5.5m/s most of time. Some heat losses were ob-
served with convection in the concentrator because of wind. In Fig. 8, power supplied by the sys-
tem was 18kW maximum at noon and 6kW minimum in the afternoon.

In this study, following the identification of system characteristics using the principles of ANN,
the outputs for a predetermined test input are predicted. The wind velocity and inlet temperatures
are kept constant, but amount of convection and ambient temperature are changed in these data.
The predicted values for different convection and ambient temperatures are obtained by searching
the flow rate that can be obtained from the system and heat quantity. The obtained results are
acceptable for engineering purposes. As shown in Figs. 7 and 8, mass flow rate and useful energy
have values with a slope parallel to the slope of experimental data. In both graphics, predicted
values are lower than the experimental data. Reasons for such deviations related with is that
ambient temperature and solar radiation values of the second experiment are lower than these
values of the first experiment. It is observed that our system works with a lower efficiency under
these parameter conditions. Using higher ambient temperature and solar radiation values than
experimental data for the system, higher predictions would be obtained.
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Fig. 6. Experimental set efficiency.
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Fig. 7. Mass flow ratio obtained from the experiment done in first experiment (in Denizli region) and ANN predicted
values for the second experiment (in Ankara region).
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Fig. 8. Variation of useful energy transferred to the water.

7. Conclusions

This experimental results presented in the paper show that the system has proved 40% efficiency
from the use of solar radiation. In addition, power supplied by the system was 18 kW maximum at
noon and 6kW minimum in the afternoon.

The design of the neural network model includes the number of hidden layers, the hidden neu-
rons, the activation function of the hidden layers, the learning rate, and the goal error along with
the initial weights and biases. Neural-network-based models have simple structure and are not
difficult to obtained based on measured input—output data. If we want to gain a network with high

prediction accuracy, we need a large quantity of sample to train the network.

With ANN, by using a well trained network, useful energy, mass flow rate and other parameters
can be obtained without doing additional experiments.
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