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ABSRACT 
The main problem to using Water-Lithium Bromide binary solution in air cooled absorption 
refrigeration systems is high probability occurring of crystallization when the solution temperature falls 
below the normal crystallization temperature for a particular salt concentration. This can occur unless 
special precautions are taken when the system is shutdown. This article examines monitoring and 
diagnosis of crystallization to resolve this problem using control strategies. In the present study, 
decrystallization line and intelligent digital controller which monitors and takes necessary 
measurements for control functions and management were added to system. Therefore, crystallization 
problem has been possibly solved by diluting the solution throughout the system prior to shut down. 
 
Keywords: Absorption refrigeration, decrystallization, monitoring and diagnosis 
 
 
1. INTRODUCTION 
 
The production of cold has applications in a considerable number of fields of human life, for 
example the food processing field, the air-conditioning sector, and the conservation of 
pharmaceutical products, etc. The conventional refrigeration cycles driven by traditional vapor 
compression in general contribute significantly in an opposite way to the concept of sustainable 
development. Two major problems have yet to be addressed: The global increasing 
consumption of limited primary energy and the refrigerants used cause serious environmental 
problems [1-2].  
An absorption refrigeration cycle is a combination of those processes as shown in figure 1. The 
working fluid in an absorption refrigeration system is a binary solution consisting of refrigerant 
and absorbent. Many working fluids are suggested in literature. There are some 40 refrigerant 
compounds and 200 absorbent compounds available. However, the most common working 
fluids are Water/NH3 and LiBr/Water. Two outstanding features of LiBr/Water are non-volatile 
as an absorbent of LiBr (The need of rectifier is eliminated) and extremely high heat of 
vaporization of as a refrigerant of water. However, using water as a refrigerant limit the low 
temperature application to that above 0 oC. The system must be operated under vacuum 
conditions. At high concentrations, the solution is prone to crystallization (figure 3). As shown 
in figure 2, the absorption cycle is plotted in a Dühring P-T chart, a pressure-temperature graph 
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where the diagonal lines represent constant LiBr mass fraction, with the pure water line at the 
left and crystallization line at the right. [3]. 

        
Figure 1. Absorption refrigeration cycle  Figure 2. Dühring chart of absorption cycle 

In absorption systems, if the solution concentration is too high or the solution temperature is 
reduced too low, crystallization may occur and interrupt machine operation. The vulnerable 
location is also decided by the mechanical structure of pipes and fittings; this is most likely to 
occur in the strong solution entering the absorber; that is the point 6 in figure 1, the concentrated 
solution at the lowest temperature. Crystallization must be avoided because the formation of 
slush in the piping network over time could form a solid and block the flow. If this occurs, the 
concentrated solution temperature needs to be raised above its saturation point so that the salt 
crystals will return to the solution, freeing the machine. The big difference between water-
cooled and air-cooled LiBr-water absorption cycles is the temperature of the absorber. With 
air-cooling, one cannot achieve a temperature of the solution in the absorber sufficiently low 
to maintain the evaporator pressure. The only way to compensate for the high absorber 
temperature is to increase the concentration of LiBr in the solution, but that brings it closer to 
crystallization [4-8]. One of the following five causes or a combination of those causes may 
trigger crystallization of air-cooled absorption cycles, and the associated precautions are also 
suggested as well:  

1. Higher ambient temperature (it is higher condenser cooling water temperature for the 
water-cooled machine): The air-cooled absorbers tend to run hotter than water-cooled units 
due to the relatively poor heat transfer characteristics of air. 
2. Air leak into the machine or non-absorbable gases produced during corrosion: Both 
deteriorate the UA and cause higher system pressure, decreased capacity and COP, and 
higher crystallization probability. A direct method for keeping the required pressure is to 
evacuate the vapor space periodically with a vacuum pump. This situation can be simulated 
by assuming a decreased UA, which will cause X6, the concentration of point 6, to move 
closer to the crystallization line limit. As a precaution to this issue, the system should be 
evacuated routinely. 
3. Too much heat input to the generator: either the exhaust temperature or the flow rate is 
too high, which results in increased solution concentrations to the point where crystallization 
may occur. As a precaution to this issue, the exhaust temperature or flow rate into the 
generator should be maintained within a specific range. 
4. Failed dilution after shutdown: During normal shutdown, the machine undergoes an 
automatic dilution cycle, which lowers the concentration of the solution throughout the 
machine. In such a case, the machine may cool to ambient temperature without 
crystallization occurring in the solutions. Crystallization is most likely to occur when the 
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machine is stopped due to power outage while operating at full load, when highly 
concentrated solutions are present in the solution heat exchanger [9]. 

 
 

 
Figure 3. Crystallization of LiBr/Water solution 

 
 
In this study, we applied simple and technological decrystallization solution to the vapor 
absorption refrigeration system to prevent breakdown and to hold steady state using a 
preventive   maintenance strategy.   
 
 
2. MATERIAL 
 
Figures 4 and 5 show the layout and flow diagram of experimental set-up. It was designed for 
continuous operation; the mixing tank receives concentrated solution and refrigerant vapor. 
The resultant dilute solution is pumped upward to plate heat exchanger by gear pump, and then 
flows to generator where it is again separated into concentrated solution and water vapor. This 
vapor is led to air-cooled condenser where it loses its latent heat to cooling air. The vapor 
changes back to liquid state and collects in condense tank. The condensed liquid drops through 
an electronic expansion valve into the evaporator below. While concentrated solution returns 
straight to the mixing tank from generator, it passes across the plate type heat exchanger where 
it gets the desired degree of sub-cooling before entering once again the mixing tank. 

 
Figure 4. Experimental set-up of LiBr/Water Absorption Refrigeration System 

 

- 192 -



machine is stopped due to power outage while operating at full load, when highly 
concentrated solutions are present in the solution heat exchanger [9]. 

 
 

 
Figure 3. Crystallization of LiBr/Water solution 

 
 
In this study, we applied simple and technological decrystallization solution to the vapor 
absorption refrigeration system to prevent breakdown and to hold steady state using a 
preventive   maintenance strategy.   
 
 
2. MATERIAL 
 
Figures 4 and 5 show the layout and flow diagram of experimental set-up. It was designed for 
continuous operation; the mixing tank receives concentrated solution and refrigerant vapor. 
The resultant dilute solution is pumped upward to plate heat exchanger by gear pump, and then 
flows to generator where it is again separated into concentrated solution and water vapor. This 
vapor is led to air-cooled condenser where it loses its latent heat to cooling air. The vapor 
changes back to liquid state and collects in condense tank. The condensed liquid drops through 
an electronic expansion valve into the evaporator below. While concentrated solution returns 
straight to the mixing tank from generator, it passes across the plate type heat exchanger where 
it gets the desired degree of sub-cooling before entering once again the mixing tank. 

 
Figure 4. Experimental set-up of LiBr/Water Absorption Refrigeration System 

 

QGen

QCond

QAbs

Q
E

v
a
p

A
IR

 C
O

O
L

E
D

 C
O

N
D

E
N

S
E

R

A
IR

 C
O

O
L

E
D

 A
B

S
O

R
B

E
R

EVAPORATOR

M
IX

IN
G

 T
A

N
K

SOLUTION
    PUMP

Wpu
m
p

C
O

N
D

E
N

S
E

  
  

 T
A

N
K

S
O

L
U

T
IO

N
  
  
  
H

E
X

2

GENERATOR

3

4

1

5 6

7

8

9

10

DECRYSTALLIZATION
               LINE

liquid refrigerant
vapor refrigerant
weak solution

strong solution
weak solutionWpump

selenoid valve

Electronic Expansion Valve
          (EEV)

EEV

Manuel controlled
Expansion Valve

Gear
Pump

Magnetic
Pump

 
Figure 5. Detailed flow diagram of set-up 

As shown in figure 6, instrumentation of the experimental set-up is composed of J type 
thermocouples, electromagnetic flowmeters, turbine type flowmeter, a hot wire anemometer, 
pressure transducers and intelligent digital controller for refrigeration system control functions 
and management. 
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Figure 6. Instrumentation of the experimental set-up 

As seen figure 7, the operation panel allows monitoring of data, access to reports via the touch 
sensitive screen and colour LCD display. The touch-screen operation panel is easily used by 
operators. All actions like manual control parameters, contact timing limits and definable 
temperature limits are menu driven. Operators can rapidly configure certain functions. Screen 
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displays allow the operator to determine optimum running states correctly. The required 
configurations are done by panel’s compiler. 

 
Figure 7. Operation and Control panel of the experimental set-up 

The control of set-up was designed and programmed with respect to two alternative states. The 
first state is manual control. According to this state, the system’s entire points can be controlled 
as manual. For example, the valves can be open, turn on or off pumps and heater and fan, EEV 
can be adjusted to set pressure drop. The second sate is automatic control. In this state, the 
system runs automatic with respect to default parameter. 

3. Monitoring and Prevention of Crystallization

Crystallization ordinarily commences when the solution temperature falls below the normal 
crystallization temperature for a particular salt concentration. This can occur unless special 
precautions are taken when the system is shutdown. Even though the operating points of the 
system are far from the crystallization limit of LiBr, monitoring of the working condition is 
necessary for the potential risk. Since crystallization limit is defined by the concentration and 
temperature of a solution, a control system should constantly monitor both parameters and give 
warning or take necessary measures. But because a measuring device of concentration or 
density is not cheap, the system’s working condition was set to over crystallization limit curve. 
In the present work, as shown figure 8, decrystallization line was added on the return line from 
generator. This method determines based on solution temperatures and the solution flow rate 
variation on the crystallization limit for different conditions at the critical point. Therefore, 
crystallization problem can be avoided by diluting the solution throughout the system prior to 
shut down. 
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Figure 8. Decrystallization line of the experimental set-up 

 
 
4. CONCLUSION 
 
In LiBr-H2O absorption refrigerator, crystallization is a serious problem. Crystallization of 
LiBr-H2O solution prevents the solution flow of the refrigerator and damages to operating 
system. The developed crystallization control system and by-pass line is applied to system to 
detect crystallization due to unexpected situations. The model successfully represented the 
solution concentration as the solution concentration approaches the crystallization line. This 
feature can be used to monitor machine operation to avoid machine downtime and resulting 
low maintenance costs.  
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