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The paper develops a "nite element scheme for computing the eigensystem for a cracked
beam for di!erent degrees of closure. Previous work in the authors' laboratories has
indicated that the ability to extend the use of mode superposition to model breathing
conditions in the crack zone would overcome the need to switch from a
frequency-domain-based model to a time-stepping scheme which had caused both
implementational and theoretical problems. In this study, the "nite element method, the
component mode synthesis method and the linear elastic fracture mechanics theory are
integrated for modelling of the cracked structures. It is believed that this is a novel synthesis
of methods. The method used by the authors is benchmarked against earlier results in the
literature.
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1. INTRODUCTION

In recent years, vibration-based inspection has become an e!ective and fast method for
detecting structural defects, such as cracks [1, 2]. In principle, the position and scale of the
defect can be determined from changes in natural frequencies [3], mode shapes of vibrations
[4] and also amplitudes of forced response [5]. It has been shown that a crack in a structure
such as a beam may cause the structure to exhibit non-linear behaviour if the crack opens
and closes (&&breathes'') during the vibration. However, in the most commonly used model it
is assumed that the crack is fully open during vibration. When a crack opens and closes
during vibration, contact phenomena must be taken into account.

Closing or breathing cracks have been investigated by Carlson [6] and Gudmunston [7],
who studied the e!ects of closing cracks on the dynamical characteristics of an edge-cracked
cantilever beam. Gudmunston found that the relative increase in natural frequencies caused
by a closing crack is much smaller than the decrease due to an open crack when compared
to the equivalent intact beam. Later, this experimental work was con"rmed, using
a numerical integration method, by Ibrahim et al. [8] who, in their study, modelled a crack
as a bilinear spring.

Chen and Chen [9], Actis and Dimarogonas [10], and Collins et al. [11] studied the
longitudinal free and forced vibrations of a prismatic bar by using direct numerical
integration through the Galerkin method. Friswell and Penny [12] used a simplistic model
of the non-linear behaviour of a beam with a closing crack.

Gash et al. [13] and Papadopoulos and Dimarogonas [14] studied the instability of
rotors due to closing cracks. They used a local #exibility to model the changes of the
0022-460X/00/460001#18 $35.00/0 ( 2000 Academic Press
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cracked rotor. Zastrau [15], using the "nite element method, investigated the steady state
responses of a simply supported beam with multiple closing cracks. Qian [16] observed that
the di!erences between amplitudes of forced vibrations of cracked beams are reduced when
the closing crack model is considered. Ostachowitz and Krawczuk [17], by using special
local "nite elements in the contact area, studied the in#uence of a closing crack. In a recent
paper, these authors presented an analysis of the forced vibrations of a cantilever beam with
a closing crack, in which the equations of motion were solved using the harmonic balance
method [18].

It is important to realize that many of the "nite element methods used to model damaged
structures are either section reduction or material property degradation methods and are
not non-linear crack section methods. It should be noted that a number of authors make no
distinction between an intact beam and the limiting sti!ness as a crack depth tends to zero.
In the dynamic problem this distinction is important. (See, for example, the commentary in
the paper by Abraham and Brandon [19]).

Abraham and Brandon applied a piece-wise linear approach to analyze vibrations of
a cantilever beam with a &&breathing crack''. Their formulation was a hybrid
frequency-domain/time-domain method. For the majority of the vibration, the crack
section is unambiguously either open or closed. During this time a mode superposition is
used to develop the response of the system. Once an imminent transition is predicted it is
necessary to transform to the time domain to model the contact conditions. This switching
procedure (described in the appendix to the paper by Brandon and Abraham [20]) was
di$cult to implement and used excessive computer time. It was recognized, although not
implemented, that it was theoretically possible to model the breathing conditions using
a succession of low-rank transformations between modal models, thereby enabling the
synthesis of simulations wholly within the frequency domain. The current paper provides
the methods and illustrative results to provide the basis for the assembly of a fully
non-linear model using successive modal transformations.

2. MATHEMATICAL MODEL

In Figure 1, a cantilever beam, of uniform cross-section A, having a transverse edge crack
of depth a at a variable position m, is shown.
Figure 1. Geometry of the cracked cantilever beam.



Figure 2. Components of the whole structure and the division into "nite elements.
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The cantilever is partitioned into two components (A and B) at the crack section enabling
a substructure approach. By separating the whole beam into two parts, the global
non-linear system can be separated into two linear subsystems joined by a local sti!ness
discontinuity. In the current study, each component is also divided into "nite elements with
two nodes and three degrees of freedom (d.o.f.s) at each node as shown in Figure 2.

2.1. STIFFNESS AND MASS MATRICES FOR CANTILEVER BEAM ELEMENT

The sti!ness and mass matrices are developed from the procedure given by Petyt [21]
adapted to 3 d.o.f.s for each node, d"Mu, v, hN. As can be seen in Figure 2, representing
a general "nite element, the applied system forces F"MF
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node, for bending in the xy plane, are given by Petyt as
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where k"¸/2, E is Young's modulus of elasticity and I
z
is the section moment of inertia

with respect to the z-axis,
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. (3)

i is the shear correction factor, G is the shear modulus and A is the area of the cross-section
of the element and
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The sti!ness and mass matrices for the 1 d.o.f. MuN local axial displacement in the
x direction are [21]
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The resulting sti!ness and mass matrices for all the 3 d.o.f.s. at each node incorporating
the K
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2.2. THE STIFFNESS MATRIX FOR THE CRACK

According to St Venant's principle the stress "eld is in#uenced only in the region near to
the crack. The additional strain energy due to the crack leads to #exibility coe$cients
expressed by stress intensity factors derived by means of Castigliano's theorem in the linear
elastic range. The compliance coe$cients are derived from the strain energy release rate, J,
developed in Gri$th}Irwin theory. For plane strain, J has the expression [22, 23]
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where E is the elastic modulus, l the Poisson ratio and K
I
, K

II
and K

III
are stress intensity

factors for opening, sliding and tearing mode deformation respectively. When modes I and
II are concerned, it is possible to give analytical expressions for the #exibility coe$cients for
a uniform beam with a rectangular cross-section. The superposition of the stress intensity
factors, for the three types of loading shown in Figure 2, gives, for the strain energy release
rate, the following expression:
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where the coe$cient i is a numerical factor depending on the shape of the cross-section
derived from Timoshenko beam theory, E*"E for plane strain and E*"E/(1!l2) for
plane stress, and (a/b) is the relative depth of the crack. The contribution to the opening
mode, mode I, is made by the bending moment M and the axial force F. The edge sliding
mode, mode II, receives a contribution from the shear force Q. If ; is the strain energy of
a cracked structure with a crack area A under the load P

i
, then
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At the same time, Castigliano's theorem implies that the additional displacement due to
crack, according to the direction of the P
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Substituting the strain energy release rate J into equation (13) the relation between
displacement and strain energy release rate J can be written as follows:
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The #exibility coe$cients, which are functions of the crack shape and the stress intensity
factors, can be introduced as follows [24, 25]:
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The compliance coe$cients matrix, after being derived from the above equation, can be
written according to the displacement vector d"Mu, v, hN as
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The inverse of the compliance matrix C~1 is the sti!ness matrix due to the crack. Finally,
the resulting sti!ness matrix for the crack can be given as
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sABAQUS 5.5.

2.3. CONTACT MODELLING

When two or more bodies come into contact, due to an externally applied loading, the
contact region may increase or decrease, as with a closing crack, and these changing
boundary conditions result in a non-linear contact problem which can be solved using the
"nite element method. In contact problems often no a priori information concerning the
contact conditions is available, which presents considerable di$culties. In a contact
analysis there are three possible states which are commonly assumed to occur: sticking,
frictionless sliding and frictional sliding contact. It is also possible that a combination of
these states could occur simultaneously in a single contact problem in di!erent regions. The
general objective, in a contact analysis, is to determine the contacting areas and contact
pressures transmitted. In this study, contact analysis of the beam having an edge crack
which is closing (seen in Figure 3) has been modelled using a proprietary "nite element
package.s The contact areas, pressures and overclosures provided by this package were used
to synthesize the contact sti!nesses used in the coupling analysis of the component mode
synthesis.

2.3.1. Contact sti+ness

Consider a two-dimensional contact between two bodies as shown in Figure 4.
In"nitesimal displacements in the normal and tangential directions (u

n
, u

t
) are independent.

The contact itself can be idealized as two independent linear springs having sti!ness k
n
and

k
t
which are oriented in the normal and tangential directions.
When the normal force F

n
is compressive the interface remains in contact and it is

assumed that the normal displacements and forces respond as a linear spring. When the
normal force F

n
is tension the contact is broken and no force is transmitted. The change in

normal displacement, assuming that there is no gap between bodies, can be given as
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curve can now be given as in Figure 5(a). Force in the tangent direction (F
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interfaces and tangential displacements and forces respond as a linear spring. The relative
displacement in the tangent direction, by assuming that there is no sliding, is
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where u
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are the displacements in the tangent direction. Figure 5(b) shows the
load}displacement curve.

By using load}displacement relationships the contact sti!ness for a nodal point, having
3 d.o.f.s, can be given as
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Figure 3. Finite element modelling of the cracked beam.

Figure 4. Contact between two bodies.

Figure 5. (a) Load}displacement curve for k
n
; (b) load}displacement curve for k

t
.
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in which F
i
and Du

j
are found, incrementally, by the proprietary "nite element software.

Finally, the additional contact sti!ness due to the closing of the crack is given as

K
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. (22)

3. COMPONENT MODE ANALYSIS

Consider a component A. The equation of motion for this component is
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where M
A
, C

A
and K

A
are mass, damping and sti!ness matrices, respectively, for the

component A, and q and f
A
(t) are the generalized displacement and external force vectors

respectively. For undamped free vibration analysis, equation (23) becomes
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and substituting them into equation (24), results in the standard free vibration equation for
the component A as
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] and [k
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] being the modal mass and modal sti!ness matrices respectively. Mass

normalizing the modal matrix by
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is mass normalized mode vector, and by using the following transformation:
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and substituting equation (31), equation (24) becomes
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where u2
A

is a diagonal matrix comprising the eigenvalues of A.

3.1. COUPLING OF THE COMPONENTS

3.1.1. Open crack

Consider two components A and B connected together via springs, as illustrated in
Figure 6. The kinetic and strain energy of the two components, in terms of principal modal
co-ordinates, can be given as

¹"1
2
sR TMsR , ;"1

2
sTKs, (33)



Figure 6. Two components connected by springs.
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where ¹ and ; are kinetic and strain energy respectively. M and K in equation (33) are

M"C
I 0

0 ID, K"C
u2

A
0

0 u2
B
D . (34)

The strain energy of the connectors, in terms of principal modal co-ordinates, is

;
C
"1

2
sTtTK

C
ts, (35)

where K
C

is the connector sti!ness matrix comprising the sti!ness matrix due to the crack.
t in equation (35) can be written as

t"C
t
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0

0 t
B
D . (36)

The total strain energy of the system is therefore,

;
T
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2
sT(K#tTK

C
t) s, (37)

where K is the uncracked system sti!ness which has been given by equation (34) and
(K#tTK

C
t) is the system sti!ness which includes sti!ness due to the crack. By using

Lagrange's equation, the equation of motion of the complete structure is

sK#(K#tTK
C

t) s"tTf (t), (38)

where t has been given by equation (36), and f (t) is the global force vector for the system.

3.1.2. Closing crack

When the crack closes, additional contact sti!ness has to be taken into consideration.
The strain energy of the connectors, in terms of principal modal co-ordinates, for a closing
crack, can be given as

;
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]ts , (39)
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where K
Ci

is the incremental connector sti!ness matrix comprising the sti!ness matrix due
to crack K

CR
, and the sti!ness matrix due to contact K

CON
, when the crack closes. K

Ci
can be

given as
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2 2 2
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] 2

2 2 2

(N]N)

(40)

where j is a scalar factor depending on the state of the crack, open or closed and assumed to
be as follows

j"0 for opening half-cycle,

j"1 for closing half-cycle. (41)

The total strain energy of the system is given as,

;
T
"1

2
sT(K#T[K

Ci
]t)s, (42)

where (K#tT[K
Ci

]t) is the system sti!ness which includes sti!ness due to the crack and
contact. Again, by using Lagrange's equation, the equation of motion of the complete
structure can be given

sK#(K#tT[K
C*
] t)s"tTf (t). (43)

From equations (43) the eigenvalues and eigenvectors of the cracked system, for the case of
a closing crack, can be determined. After solving these equations, the displacements for each
component are calculated by using equation (31).
TABLE 1

Natural frequencies of the cracked beam for m/¸"0)20, 0)40, 0)60 and 0)80 (cack is open)

Nat.freqs. m/¸ a/b ratio a/b ratio a/b ratio a/b ratio Intact
ratio 0)20 0)40 0)60 0)80 beam

1st mode 0)20 1020)137 966)9525 842)2205 551)0463 0037)0189
2nd mode 0)20 6457)396 6454)483 6448)175 6436)008 6458)3438
3rd mode 0)20 17872)91 17596)57 16944)56 15512)55 17960)564
4th mode 0)20 34553)13 33100)42 29796)26 25182)06 34995)429
1st mode 0)40 1030)095 1006)856 942)7322 724)2739
2nd mode 0)40 6389)394 6174)539 5689)841 4728)978
3rd mode 0)40 17844)86 17499)83 16792)25 15606)35
4th mode 0)40 34866)97 34420)09 32971)51 29180)94
1st mode 0)60 1035)284 1029)262 1010)864 920)7848
2nd mode 0)60 6365)914 6071)655 5371)803 3798)216
3rd mode 0)60 17807)94 17359)27 16478)82 15153)19
4th mode 0)60 34895)50 34572)37 33710)43 31412)07
1st mode 0)80 1036)884 1036)414 1034)943 1026)769
2nd mode 0)80 6440)057 6375)921 6174)710 5169)264
3rd mode 0)80 17758)61 17077)99 15286)83 11353)18
4th mode 0)80 34393)87 32639)52 29529)79 26230)83
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4. RESULTS AND DISCUSSION

4.1. OPEN CRACK

The method described has been applied to a cracked Timoshenko beam as shown in
Figure 1. The dimensions of the beam are ¸"0)2, b"0)0078 and d"0)025 m, chosen to
enable comparison with the results in the literature. Calculations have been performed with
the numerical values of o "7850 kg/m3, E"216]10 N/m2, G"3E/8 and l"!0)28. In
order to check the accuracy of the method, the four lowest natural frequencies for various
crack positions and crack ratios are examined. In Table 1 the "rst four natural frequencies
of the cracked Timoshenko beam and intact beam have been given for various crack
positions and crack ratios. Figure 7 shows a plot of the ratio of the "rst natural frequency of
the cracked beam to the "rst natural frequency of the corresponding intact Timoshenko
beam as a function of the crack depth ratio a/b for several crack positions. The natural
frequencies of the cracked beam are lower than the natural frequencies of the corresponding
intact beam, as expected. These di!erences increase with the depth of the crack. Due to the
Figure 8. Change in the "rst natural frequency in terms of crack ratio (crack is open): **, m"0)2; *]*,
Abraham; *#*, Shen; *e*, Wendtland.

Figure 7. Frequency ratios for di!erent crack positions (crack is open):*#*, m"0)2;*h*, m"0)4;*n*, m"0)6.
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bending moment along the beam, which is concentrated at the "xed end, a crack near the
free end will have less e!ect on the fundamental frequency than a crack closer to the "xed
end and it can be said that the frequencies are almost unchanged when the crack is located
away from the "xed end.

In developing new methods of analysis it is important to benchmark against known
experimental, theoretical and numerical cases. For this reason, the results are compared
with the experimental data obtained by Wendtland [26] and theoretical data obtained by
Abraham [27] and Shen and Pierre [28] as shown in Figures 8 and 9.

The "rst, second and third modes are shown in Figures 10, 11 and 12 for a crack
respectively, at m"0)2¸, 0)4¸ and 0)6¸ when the crack depth ratio takes the values
a/b"0)2, 0)4 and 0)6.
Figure 10. First-mode shapes of cracked beam for m/¸"0)2 and a/b"0)2, 0)4, 0)6 (crack is open):**, Intact;
---e---, a/b"0)2; 2h*, a/b"0)4; 2#2, a/b"0)6.

Figure 9. Change in the fourth natural frequency in terms of crack ratio (crack is open):**, m"0)8;*#*,
Shen; *e*, Wendtland.



Figure 11. Second-mode shapes of cracked beam for m/¸"0)4 and a/b"0)2, 0)4, 0)6 (crack is open): **,
Intact; ---e---, a/b"0)2; 2n*, a/b"0)4; 2]2, a/b"0)6.

Figure 12. Third-mode shapes of cracked beam for m/¸"0)6 and a/b"0)2, 0)4, 0)6 (crack is open):**, Intact;
---e---, a/b"0)2; 2n*, a/b"0)4; a/b"0)6.

14 M. KISA AND J. BRANDON
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4.2. CLOSING CRACK

To facilitate comparison, the properties of the Timoshenko beam are the same as those
used by Abraham [27] (¸"3, b"0)2 and d"0)2 m). The crack parameters are m"0)5/¸
and a/b"0)5. As analysis has been done incrementally the crack face will come into contact
progressively. The contact sti!ness, for each increment, calculated and corresponding
eigenvalues and mode shapes obtained. Tables 2}5 give the natural frequencies for the
closing crack and for the corresponding open crack and intact beam. As expected the
natural frequencies lie between the natural frequencies of the intact beam and those
obtained by the model of the open crack. This is due to the fact that the global sti!ness of
the system is between the sti!nesses for the open crack and intact beam cases, whilst the
inertia distribution is unchanged.

As can be seen from Figures 13 and 14, there is a good agreement between results
obtained by current method and by the method given by reference [27], in which the
analysis has been done by a simpli"ed analytical solution [20]. When the crack closes there
is an increase in the natural frequencies since the system sti!ness increases due to contact
e!ects.
TABLE 4

Natural frequencies of the ,fth increment when 80% of the crack surfaces are closed

Natural frequencies for a/b"0)5 and m"0)5/¸
Intact beam Open crack Fifth increment

117)913749217 112)205673906 115)871022308
724)825104081 610)542787398 676)486346856

1976)19407474 1972)90087756 1974)11689350

TABLE 3

Natural frequencies of the third increment when 30% of the crack surfaces are closed

Natural frequencies for a/b"0)5 and m"0)5/¸
Intact beam Open crack Third increment

117)913749217 112)205673906 115)598945934
724)825104081 610)542787398 670)770766303

1976)19407474 1972)90087756 1974)02048400

TABLE 2

Natural frequencies of the ,rst increment when 10% of the crack surfaces are closed

Natural frequencies for a/b"0)5 and m"0)5/¸
Intact beam Open crack First increment

117)913749217 112)205673906 115)553127158
724)825104081 610)542787398 669)823316719

1976)19407474 1972)90087756 1974)00435129



TABLE 5

Natural frequencies of the sixth increment when 80% of the crack surfaces are closed

Natural frequencies for a/b"0)5 and m"0)5/¸
Intact beam Open crack Sixth increment

117)913749217 112)205673906 115)894440482
724)825104081 610)542787398 676)985583037

1976)19407474 1972)90087756 1974)12524094

Figure 13. First-mode shapes when crack is fully closed, m/¸"0)5 and a/b"0)5: - - - - - , present method;*]*,
Abraham.

Figure 14. Second-mode shapes when crack is fully closed, m/¸"0)5 and a/b"0)5: - - - - - , present method;
*]*, Abraham.
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5. CONCLUDING REMARKS

Previous work by Abraham and Brandon [19, 20] was based on a hybrid approach using
mode superposition when a cracked structure was in either the open-crack or closed-crack
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condition but adopting a time-domain approach during the brief intervals of transition.
Experience of these methods suggested that a more sophisticated modelling approach
during the transition intervals would enable the simulation to be achieved using an evolving
modal model without the necessity to transform to the time domain and give signi"cant
insights into the evolution of the non-linear behaviour of the system.

The availability of a library of eigensystems corresponding to di!erent degrees of closure
potentially enables the mode superposition scheme to be extended into the transition
interval.
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