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Abstract

This study is an investigation of the effects of cracks on the dynamical characteristics of a cantilever composite beam, made of

graphite fibre-reinforced polyamide. The finite element and the componentmode synthesismethods are used tomodel the problem. The

cantilever composite beam divided into several components from the crack sections. Stiffness decreases due to cracks are derived from

the fracturemechanics theory as the inverse of the compliancematrix calculatedwith theproper stress intensity factors and strain energy

release rate expressions. The effects of the location and depth of the cracks, and the volume fraction and orientation of the fibre on the

natural frequencies and mode shapes of the beam with transverse non-propagating open cracks, are explored. The results of the study

lead to conclusions that, presented method is adequate for the vibration analysis of cracked cantilever composite beams, and by using

the drop in the natural frequencies and the change in the mode shapes, the presence and nature of cracks in a structure can be detected.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

During operation, all structures are subjected to de-

generative effects that may cause initiation of structural

defects such as cracks which, as time progresses, lead to

the catastrophic failure or breakdown of the structure.

Thus, the importance of inspection in the quality as-

surance of manufactured products is well understood.

Several methods, such as non-destructive tests, can be
used to monitor the condition of a structure. It is clear

that new reliable and inexpensive methods to monitor

structural defects such as cracks should be explored.

Cracks or other defects in a structural element influence

its dynamical behaviour and change its stiffness and

damping properties. Consequently, the natural fre-

quencies and mode shapes of the structure contain in-

formation about the location and dimensions of the
damage. Vibration analysis, which can be used to detect

structural defects such as cracks, of any structure offers

an effective, inexpensive and fast means of non-
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destructive testing. What types of changes occur in the
vibration characteristics, how these changes can be de-

tected and how the condition of the structure is inter-

preted has been the topic of several research studies in

the past [1–7] and reviewed by many researchers such as

Wauer [8] and Dimarogonas [9].

Over the past decade, several techniques have been

explored for detecting and monitoring of the defects in

the composite materials. Adams et al. [10] showed that
any defect in fibre-reinforced plastics could be detected

by reduction in natural frequencies and increase in

damping. Nikpour and Dimarogonas [11] studied the

variation of the mixed term in the energy release rate for

various angles of inclination of the material axes of

symmetry and they derived the local compliance matrix

of a prismatic beam with a central crack. Nikpour [12]

studied the buckling of cracked composite columns and
showed that the instability increases with the column

slenderness and the crack depth. Oral [13] developed a

shear flexible finite element for non-uniform laminated

composite beams. He tested the performance of the ele-

ment with isotropic and composite materials, constant

and variable cross-sections, and straight and curved
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Fig. 1. Geometry of the cantilever composite beamwithmultiple cracks.
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geometries. Krawczuk [14] developed a new finite element

for the static and dynamic analysis of cracked composite

beams. He assumed that the crack changes only the

stiffness of the element whereas the mass of the element is

unchanged. Krawczuk and Ostachowicz [15] investigated
the eigenfrequencies of a cracked cantilever composite

beam. They presented twomodels of the beam. In the first

model, the crack was modelled by a massless spring and

in the second model the cracked part of the beam re-

placed by a cracked element. Krawczuk et al. [16] pro-

posed an algorithm to find the characteristic matrices of a

composite beam with a single transverse fatigue crack. In

the literature, exception of a few papers [17–21], where
the vibration analysis of beams with two or multiple

cracks was explored, there is a small number of research

works addressing particularly to the problem of free vi-

bration of composite beams having multiple open-edge

cracks. Recently, Song et al. [22] investigated the dy-

namics of anisotropic composite cantilevers. They pre-

sented an exact solution methodology utilising Laplace

transform technique to study the bending free vibration
of cantilever composite beams with multiple open cracks.

The full eigensolution of a structure containing sub-

structures each having large numbers of degrees of

freedom can be cumbersome and costly in computing

time. A method proposed by Hurty [23] enabled the

problem to be broken up into separate elements and thus

considerably reduced its complexity. His method con-

sisted of considering the structure in terms of substruc-
tures and was called as �substructuring�. Essentially, the
method required the derivation of the dynamic equations

for each component and these equations were then

connected mathematically by matrices which represent

the physical displacements of interface connection points

on each component. In this way, one large eigenproblem
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Fig. 2. Components of the composite beam and div
is replaced by several smaller ones. In many respects, the

original rationale for such substructuring techniques has

been rendered obsolete by the widespread availability of

high performance computers. However, there are appli-

cations where alternative justifications are valid, for ex-
ample where the results of independent analysis of

individual structural modules are to be used to predict

the dynamics of an assembled structure. In the present

context, the author wishes to examine the response pre-

diction of an assembled structure under a variety of as-

sumptions concerning nonlinearity at the interface of

substructures which are otherwise linear.
2. Mathematical model

The model chosen is a cantilever composite beam of

uniform cross-section A, having multiple open-edge

transverse cracks of various depths ai at variable posi-

tions Li (i ¼ 1; . . . ; n). The width, length and height of

the beam are B, L and H, respectively, Fig. 1. The angle
between the fibres and the axis of the beam is a. The
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cantilever beam is partitioned into several components

from the crack sections enabling a substructure ap-

proach, Fig. 2. By separating the whole beam into parts,

global non-linear system can be separated into linear

subsystems joined by local stiffness discontinuities. In
the current study, each component is also divided into

finite elements with two nodes and three degrees of

freedom at each node as shown in Fig. 2.

2.1. Stiffness and mass matrices for composite beam

element

The stiffness and mass matrices are developed from
the procedure given by Krawczuk [15] and modified to

three degrees of freedom for each node, d ¼ fu; v; hg. In
Fig. 2, a general finite element, the applied system forces

F ¼ fF1;Q1;M1; F2;Q2;M2g and the corresponding dis-

placements d ¼ fu1; v1; h1; u2; v2; h2g are shown. The

stiffness matrix for a two-noded composite beam ele-

ment with three degrees of freedom d ¼ fu; v; hg at each

node, for the case of bending in the xy plane, are given
as follows [15]:

Kel ¼ ½kij�ð6�6Þ; ð1Þ

where kij ði; j ¼ 1; . . . ; 6Þ are given as

k11 ¼ k55 ¼ 7BH�S33=3Le;

k12 ¼ k21 ¼ �k56 ¼ �k65 ¼ BH�S33=2;

k13 ¼ k31 ¼ k35 ¼ k53 ¼ �8BH�S33=3Le;

k14 ¼ k41 ¼ k36 ¼ k63 ¼ �k23 ¼ �k32

¼ �k45 ¼ �k54 ¼ 2BH�S33=3;

k15 ¼ k51 ¼ BH�S33=3Le;

k16 ¼ k61 ¼ �k25 ¼ �k52 ¼ �BH�S33=6; ð2Þ
k22 ¼ k66 ¼ BHð7H 2�S11=36Le þ Le

�S33=9Þ;
k24 ¼ k42 ¼ k46 ¼ k64 ¼ BHð�2H 2�S11=9Le þ Le

�S33=9Þ;
k26 ¼ k62 ¼ BHðH 2�S11=36Le � Le

�S33=18Þ;
k33 ¼ 16BH�S33=3Le;

k44 ¼ BHð4H 2�S11=9Le þ 4Le
�S33=9Þ;

k34 ¼ k43 ¼ 0;

where B, H and Le are the dimensions of the composite
beam element. �S11 and �S33 are the stress–strain constants

and given as [24]

S11 ¼ �S11m4 þ 2ð�S12 þ 2�S33Þm2n2 þ �S22n4; ð3Þ

S33 ¼ ð�S11 � 2�S12 þ �S22 � 2�S33Þm2n2 þ �S33ðm4 þ n4Þ; ð4Þ
where m ¼ cos a, n ¼ sin a and �Sij terms are determined

from the relations [24]

�S11 ¼
E11

ð1� m212E22=E11Þ
; �S22 ¼ S11E22=E11;

�S12 ¼ m12S22; �S33 ¼ G12;

ð5Þ
where E11, E22, G12 and m12 are the mechanical properties

of the composite and can be determined as shown in

Appendix A.

The mass matrix of the composite beam element can

be given as [15]

Mel ¼ ½mij�ð6�6Þ; ð6Þ

where mij ði; j ¼ 1; . . . ; 6Þ are
m11 ¼ m55 ¼ 2qBHLe=15;

m12 ¼ m21 ¼ �m56 ¼ �m65 ¼ qBHL2
e=180;

m13 ¼ m31 ¼ m35 ¼ m53 ¼ qBHLe=15;

m14 ¼ m41 ¼ �m45 ¼ �m54 ¼ �qBHL2
e=90;

m36 ¼ m63 ¼ m23 ¼ m32 ¼ m34 ¼ m43 ¼ 0;

m15 ¼ m51 ¼ �qBHLe=30;

m16 ¼ m61 ¼ �m25 ¼ �m52 ¼ qBHL2
e=180;

m22 ¼ m66 ¼ qBHLeðL2
e=1890� H 2=360Þ;

m24 ¼ m42 ¼ m46 ¼ m64

¼ qBHLeð�L2
e=945þ H 2=180Þ;

m26 ¼ m62 ¼ qBHLeðL2
e=1890� H 2=360Þ;

m33 ¼ 8qBHLe=15;

m44 ¼ qBHLeð2L2
e=945þ 2H 2=45Þ;

ð7Þ

where q is the mass density of the element.

2.2. The stiffness matrix for the crack

According to the St. Venant�s principle, the stress

field is influenced only in the region near to the crack.

The additional strain energy due to crack leads to flex-
ibility coefficients expressed by stress intensity factors

derived by means of Castigliano�s theorem in the linear

elastic range. In this study, the bending-stretching effect

due to mid-plane asymmetry induced by the cracks is

neglected. The compliance coefficients Cij induced by

crack are derived from the strain energy release rate, J,

developed in Griffith–Irwin theory [25]. J can be given as

J ¼ oUðPi;AÞ
oA

; ð8Þ

where A is the area of the crack section, Pi are the cor-
responding loads, U is the strain energy of the beam due

to crack and can be expressed as [11]

U ¼
Z
A

D1

Xi¼N

i¼1

K2
Ii

 
þD12

Xi¼N

i¼1

KIi

Xj¼N

j¼1

KIIjþD2

Xi¼N

i¼1

K2
IIi

!
dA;

ð9Þ
where KI and KII are the stress intensity factors for

fracture modes of I and II. D1, D12 and D2 are the co-
efficients depending on the materials parameters [11]

D1 ¼ �0:5�b22 Im
s1 þ s2
� �

; ð10Þ
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D12 ¼ �b11 Imðs1s2Þ; ð11Þ

D2 ¼ 0:5�b11 Imðs1 þ s2Þ: ð12Þ
The coefficients s1, s2 and �bij are given in Appendix A.

The mode I and II stress intensity factors, KI and KII, for

a composite beam with a crack are expressed as [26]

Kji ¼ ri

ffiffiffiffiffiffi
pa

p
YjðnÞFjiða=HÞ; ð13Þ

where ri is the stress for the corresponding fracture

mode, Fjiða=HÞ is the correction factor for the finite
specimen size, Yj(n) is the correction factor for the an-

isotropic material [11], a is the crack depth and H is the

element height. Castigliano�s theorem [27] implies that

the additional displacement due to crack, according to

the direction of the Pi, is

ui ¼
oUðPi;AÞ

oPi
: ð14Þ

Substituting the strain energy release rate J into Eq.

(14), the relation between displacement and strain en-

ergy release rate J can be written as follows:

ui ¼
o

oPi

Z
A
JðPi;AÞdA: ð15Þ

The flexibility coefficients, which are the functions of the

crack shape and the stress intensity factors, can be in-

troduced as follows [25]:

cij ¼
oui
oPj

¼ o2

oPioPj

Z
A
JðPi;AÞdA ¼ o2U

oPioPj
: ð16Þ

The compliance coefficients matrix, after being derived
from above equation, can be given according to the

displacement vector d ¼ fu; v; hg as

C ¼ ½cij�ð3�3Þ; ð17Þ

where cij (i; j ¼ 1; 2; 3) are derived by using Eqs. (8)–

(16).

The inverse of the compliance coefficients matrix,

C�1, is the stiffness matrix due to crack. Considering the

cracked node as a cracked element of zero length and

zero mass [5], the crack stiffness matrix can be repre-

sented by equivalent compliance coefficients. Finally,

resulting stiffness matrix for the crack can be given as

Kc ¼ ½C��1 �½C��1

�½C��1 ½C��1

� �
ð6�6Þ

: ð18Þ
3. Component mode analysis

The equation of motion of a mid-plane symmetrical

composite beam is [24]

IS11o4yðx; tÞ=ox4 þ qAo2yðx; tÞ=ot2 ¼ f ðtÞ; ð19Þ
where I, q, A and yðx; tÞ are the geometrical moment of

inertia of the beam cross-section, material density, cross-
sectional area of the beam and transverse deflection of

the beam, respectively. Now, consider the component

A1, Fig. 2, for undamped vibration analysis, Eq. (19), in

matrix notation, can be given as

MA1
€qA1

þ KA1
qA1

¼ fA1
ðtÞ; ð20Þ

where MA1
and KA1

are the mass and stiffness matrices of

the component A1, respectively, qA1
and fA1

ðtÞ are the

generalised displacement and external force vectors, re-

spectively. Assuming that

fqA1
g ¼ f/A1

g sinðxA1
t þ bÞ;

f€qA1
g ¼ �x2

A1
f/A1

g sinðxA1
t þ bÞ

ð21Þ

and substituting them into Eq. (20), one ends up with

the standard free vibration equation for the component

A1 as,

x2
A1
MA1

/A1
¼ KA1

/A1
; ð22Þ

which gives eigenvalues x2
A11

; . . . ;x2
A1n

and modal ma-

trix /A1
for the component A1. Making the transfor-

mation

qA1
¼ /A1

pA1
; ð23Þ

where pA1
is the principal coordinate vector. By

premultiplying /T
A1

and substituting Eq. (23), Eq. (20)

becomes

ð/T
A1
MA1

/A1
Þ€pA1

þ ð/T
A1
KA1

/A1
ÞpA1

¼ /T
A1
fA1

ðtÞ; ð24Þ

where

/T
A1
MA1

/A1
¼ ½mm�;

/T
A1
KA1

/A1
¼ ½km�;

ð25Þ

where [mm] and [km] are modal mass and stiffness matri-

ces, respectively. Mass normalising the modal matrix by

wij ¼
/ijffiffiffiffi
m

p
jj

; ð26Þ

where wij is mass normalised mode vector. By using the

transformation

qA1
¼ wA1

sA1
ð27Þ

by premultiplying wT
A1

and substituting Eq. (27), Eq. (20)

becomes

I€sA1
þ x2

A1
sA1

¼ wT
A1
fA1

ðtÞ; ð28Þ

where x2
A1

is a diagonal matrix comprising the eigen-

values of A1.

3.1. Coupling of the components

Consider components, A1;A2; . . . ;AN , joined to-

gether by means of springs capable of carrying axial,

shearing and bending effects, Fig. 3. The kinetic and
strain energy of the components, in terms of principal

modal coordinates, can be given as
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Fig. 3. Composite beam components connected by springs.
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T ¼ 1

2
_sTM _s;

U ¼ 1

2
sTKs;

ð29Þ

where T and U are kinetic and strain energy, respec-
tively. M and K in Eq. (29) are

M ¼

I 0 � � � 0

0 I � � � 0

� � � � � � � � � � � �
0 0 � � � I

2
6664

3
7775;

K ¼

x2
A1

0 � � � 0

0 x2
A2

� � � 0

� � � � � � � � � � � �
0 0 � � � x2

AN

2
66664

3
77775:

ð30Þ

The strain energy of the connectors, in terms of princi-

pal modal coordinates, is

UC ¼ 1

2
sTwTKCws; ð31Þ

where KC is the stiffness matrix of the cracked nodal

element and can be calculated by using Eq. (18). w in Eq.
(31) can be written as

w ¼

wA1
0 � � � 0

0 wA2
� � � 0

� � � � � � � � � � � �
0 0 � � � wAN

2
664

3
775: ð32Þ

The total strain energy of the system is, therefore,

UT ¼ 1

2
sTðK þ wTKCwÞs; ð33Þ

where K has been given by Eq. (30). The equation of

motion of the complete structure is

€sþ ðK þ wTKCwÞs ¼ wTf ðtÞ; ð34Þ
wherew has been given by Eq. (32), f ðtÞ is the global force
vector for the system. From Eq. (34), the eigenvalues and

mode shapes of the cracked system can be determined.

After solving these equations, the displacements for each

component are calculated by using Eq. (27).
4. Results and discussion

4.1. Validation of the current approach

In order to check the accuracy of the present method,

the case considered in [16] is adopted here. The beam
assumed to be made of unidirectional graphite fibre-re-

inforced polyamide. The geometrical characteristics and

material properties of the beam were chosen as the same

of those used in [16]. The material properties of the

graphite fibre-reinforced polyamide composite, in terms
of fibres and matrix, identified by the indices f and m,

respectively, are

The geometrical characteristics, the length (L), height

(H) and width (B) of the composite beam, as consistent
with [16], were chosen as 0.6 m, 0.025 m and 0.05 m,

respectively.

Firstly, the presented method has been applied for the

free vibration analysis of a non-cracked composite

cantilever beam. The three lowest eigenfrequencies for

various values of the angle of the fibre (a) and the vol-

ume fraction of fibres (V) are determined. As shown in

Fig. 4, the results found by using a four elements model
are compared with the analytical and numerical solu-

tions found in the literature [16,24]. The non-dimen-

sional natural frequencies are normalised according to

the following relation [16]:

-i ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiH=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�S11=12q

qr
; ð35Þ

where L and H show the length and height of the beam,

respectively. xi is the ith dimensional natural frequency.

As can be seen from the figures, an excellent agreement

has been found between the results.

Secondly, the natural frequencies and mode shapes of

the cantilever composite beam having single open-edge

crack are analysed. The calculations have been carried

out for various volume fractions of the fibres (V), the
fibre angles (a) and the crack ratios (a=H ). The natural

frequencies of the cracked cantilever composite beam

are lower than those of the corresponding intact beam,

as expected. In Fig. 5, the changes in the first natural

frequency of the cracked beam are given as a function of

the different crack ratios (a=H ) and the fibre orientations

(a) for several volume fractions (V). First non-dimen-

sional natural frequencies are normalised according to
the following equation:

x ¼ xðaÞ
xncðaÞ

; ð36Þ

where xðaÞ and xncðaÞ denote the natural frequency of

the cracked and non-cracked cantilever composite beam

as a function of the angle of the fibre ðaÞ, respectively.
As seen in Fig. 5, when the crack is perpendicular to the

fibre direction, the decrease in the first natural frequency

Modulus of elasticity Em ¼ 2:756 GPa,

Ef ¼ 275:6 GPa

Modulus of rigidity Gm ¼ 1:036 GPa,

Gf ¼ 114:8 GPa

Poisson�s ratio mm ¼ 0.33, mf ¼ 0:2
Mass density qm ¼ 1600 kg/m3,

qf ¼ 1900 kg/m3
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Fig. 4. Non-dimensional natural frequencies of the intact composite beam as a function of the fibre angle a.
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is highest. As the angle of the fibre increases, the changes
in the first frequency reduce. For the value of the angle

of fibre is greater than 45� these changes are very low

and thus, the fundamental frequency of the cantilever

composite beam with cracks does not differ too much

from that of the corresponding non-cracked beam.

Fig. 5 shows that the reduction in the first natural fre-

quency is higher for the volume fraction of the fibres is

between 0.3 and 0.5.
In Fig. 6, the variation of the first natural frequencies

of the cracked cantilever composite beam is presented as

a function of relative crack positions (L1=L) and depths

(a=H ). In the analysis, the volume and angle of fibre

were assumed to be 0.1 and 0�, respectively. Non-di-

mensional natural frequencies are normalised according

to Eq. (36). Due to the bending moment along the beam,

which is concentrated at the fixed end, a crack near the
free end will have a smaller effect on the fundamental

frequency than a crack closer to the fixed end, and as

seen from Fig. 6, it can be concluded that the frequen-

cies are almost unchanged when the crack is located

away from the fixed end. These conclusions are in per-

fect agreement to those outlined by Krawczuk and

Ostachowicz [16].
4.2. Vibration of composite beam with multiple cracks

After verification of the present method, the approach

is applied to a composite beam with multiple cracks as

shown in Fig. 1. The numerical illustrations were carried

out for a composite cantilever beam having the same

geometrical characteristics and material properties as the

ones supplied in [22]. The material properties of the

composite beam were the same as those used in the pre-
vious case. The geometrical beam characteristics, consis-

tent with [22], were L ¼ 1 m, H ¼ 0:025 m, B ¼ 0:025 m.

In Fig. 7, the variation of the first three lowest natural

frequencies of the composite beam with multiple cracks

is shown as a function of fibre orientation (a) for the

different crack locations (Li=L). In this figure, three cases,

labelled as E, F and G, were considered. In the model,

the number of the cracks assumed to be three. The crack
locations (L1=L, L2=L, L3=L) for the cases E, F and G,

were chosen as, ð0:05; 0:15; 0:25Þ, ð0:45; 0:55; 0:65Þ,
ð0:75; 0:85; 0:95Þ, respectively. For numerical calcula-

tions, the volume of the fibre (V) and the crack ratio

(a=H ) were assumed to be 0.5 and 0.2, respectively. The

non-dimensional natural frequencies, for the present and

subsequent cases, are normalised according to Eq. (36).



V = 0.10

0,75

0,8

0,85

0,9

0,95

1

1,05

0 15 30 45 60 75 90

Angle of fibre (deg)

R
el

at
iv

e 
fi

rs
t 

fr
eq

ue
nc

y

a/H=0.0
a/H=0.2
a/H=0.4
a/H=0.6

V = 0.30

0,75

0,8

0,85

0,9

0,95

1

1,05

0 15 30 45 60 75       90

Angle of fibre (deg)

R
el

at
iv

e 
fi

rs
t 

fr
eq

ue
nc

y

a/H=0.0
a/H=0.2
a/H=0.4
a/H=0.6

V = 0.50

0,75

0,8

0,85

0,9

0,95

1

1,05

0 15 30 45 60 75 90

Angle of fibre (deg)

R
el

at
iv

e 
fi

rs
t 

fr
eq

ue
nc

y

a/H=0.0
a/H=0.2
a/H=0.4
a/H=0.6

V = 0.70

0,75

0,8

0,85

0,9

0,95

1

1,05

0 15 30 45 60 75       90

Angle of fibre (deg)

R
el

at
iv

e 
fi

rs
t 

fr
eq

ue
nc

y

a/H=0.0
a/H=0.2
a/H=0.4
a/H=0.6

Fig. 5. Changes in the first natural frequency of the cracked composite beam as a function of the angle of fibre for various crack ratios.

Fig. 6. Changes in the first natural frequency for various relative crack

depth and location.
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It can be clearly seen from the Fig. 7 that, when the

cracks are placed near the fixed end the decreases in

the first natural frequency are highest, whereas, when
the cracks are located near the free end, the first natu-

ral frequencies are almost unaffected. This observation
goes to the conclusion that, the first, second and third

natural frequencies are most affected when the cracks

located at the near of the fixed end, the middle of the

beam and the free end, respectively, Fig. 7. This con-

clusion is clearly seen from Fig. 8, which illustrates the

first three natural bending mode shapes of the cracked

composite beam.

Fig. 9 shows the first three natural frequencies as a
function of the fibre orientation (a) for different crack

ratios (a=H ). In the model, the composite beam has four

cracks which were located as L1=L ¼ 0:05, L2=L ¼ 0:35,
L3=L ¼ 0:65, L4=L ¼ 0:95, and the volume of fibre (V)

was 0.5. It is noticeable that decreases in the natural

frequencies become more intensive with the growth of

the crack depth. The most difference in frequency occurs

when the angle of the fibre (a) is 0�. When the value of
the angle of fibre is greater than 45�, the effects of

the cracks on the frequencies decrease. This can be
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explained as the flexibility due to crack is negligible

when the angle of the fibre is greater then 45� [16], es-

pecially when the crack ratio is relatively low.

Fig. 10 presents the first three natural frequencies as a

function of the volume of the fibre (V) for the several
values of the crack ratios (a=H ). As the previous case,

the composite beam has four cracks which were located

as L1=L ¼ 0:05, L2=L ¼ 0:35, L3=L ¼ 0:65, L4=L ¼ 0:95
and the angle of the fibre (a) was 0�. As can be seen from

the figure, the natural frequencies are affected by the

values of the volume of the fibre (V) and the crack ratios

(a=H ), as expected. The flexibility due to cracks is high

when the volume of the fibre is between 0.2 and 0.8, and
maximum when V ¼ 0:45 [16]. Therefore, if the volume

of the fibre is between 0.2 and 0.8 and the crack ratio is

getting higher, the frequency reductions are relatively

high, Fig. 10.

In all previous cases, a unique crack depth was con-

sidered for the all cracks. Figs. 11 and 12 show the effect

of the different crack ratios and the values of the angle of

the fibre on the natural frequencies and mode shapes of a
composite beam having three cracks. In the analysis

three cases, shown as E1, F1 and G1, were considered.

The crack locations and ratios (L1=L ða1=HÞ;
L2=L ða2=HÞ; L3=L ða3=HÞ) for the cases E1, F1 and G1,

were chosen as, ð0:15 ð0:2Þ; 0:35 ð0:4Þ; 0:55 ð0:6ÞÞ, ð0:15
ð0:2Þ; 0:35 ð0:6Þ; 0:55 ð0:4ÞÞ, ð0:15 ð0:6Þ; 0:35 ð0:4Þ; 0:55
ð0:2ÞÞ, respectively. In the natural frequency analysis,

the volume of the fibre (V) was assumed to be 0.5 while
in the natural mode shape calculations the volume (V)

and angle (a) of the fibre were 0.5 and 0�, respectively.
From these figures, it is apparent that the maximum

fundamental frequency drop occurs when the large

cracks are located closer to the fixed end, while the

second and third natural frequencies and mode shapes

exhibit higher changes when the large cracks are situ-

ated closer to the middle of the beam and at a distance
equal to 33% of the beam length from the fixed end,

respectively.
5. Concluding remarks

This paper has presented a new method for the nu-

merical modelling of the free vibration of a cantilever
composite beam having multiple open and non-propa-

gating cracks. The method integrates the fracture me-

chanics and the joint interface mechanics to couple

substructures. In the methods observed in the literature

compromises have been made either in the representa-

tion of the physics of the nonlinearities in defective

structures or in the complexity of the structure which

can be analysed. For example, finite element studies
usually use a simplistic representation of the interface

mechanics whereas analytical studies require simple

boundary conditions. Neither is satisfactory in practical
design studies. It is believed that the current approach

addresses both of these issues leading to the develop-

ment of design tools. Consequently, the present ap-

proach can be used for the analysis of non-linear

interface effects such as contact that occurs when the
cracks close. To illustrate the effectiveness of the ap-

proach, results have been compared with previous

studies published in the literature leading to confidence

in the validity of this approach.
Appendix A

The roots of following characteristic equation give

the complex constants s1 and s2 [24]:

�b11s4 � 2�b16s3 þ ð2�b12 þ �b66Þs2 � 2�b26sþ �b22 ¼ 0;

where �bij constants are

�b11 ¼ b11m4 þ ð2b12 þ b66Þm2n2 þ b22n4;

�b22 ¼ b11n4 þ ð2b12 þ b66Þm2n2 þ b22m4;

�b12 ¼ ðb11 þ b22 � b66Þm2n2 þ b12ðm4 þ n4Þ;

�b16 ¼ ð�2b11 þ 2b12 þ b66Þm3nþ ð2b22 � 2b12 � b66Þmn3;

�b26 ¼ ð�2b11 þ 2b12 þ b66Þn3mþ ðb22 � 2b12 � b66Þnm3;

�b66 ¼ 2ð2b11 � 4b12 þ 2b22 � b66Þm2n2 þ b66ðm4 þ n4Þ;
where m ¼ cos a, n ¼ sin a and bij are compliance con-

stants of the composite along the principal axes. bij can
be related to the mechanical constants of the material by

b11 ¼
1

E11

1� m212
E22

E11

� �
; b22 ¼

1

E22

ð1� m223Þ;

b12 ¼
�m12
E11

ð1þ m23Þ; b66 ¼ 1=G12; b44 ¼ 1=G23;

b55 ¼ b66;

where E11, E22, G12, G23, m12, m23 and q are the mechanical

properties of the composite and calculated using the

following formulae [24]:

q ¼ qfV þ qmð1� V Þ; E11 ¼ EfV þ Emð1� V Þ;

E22 ¼ Em

Ef þ Em þ ðEf � EmÞV
Ef þ Em � ðEf � EmÞV

� �
;

m12 ¼ mfV þ mmð1� V Þ;

m23 ¼ mfV þ mmð1� V Þ 1þ mm � m12Em=E11

1� m2m þ mmm12Em=E11

� �
;

G12 ¼ Gm

Gf þ Gm þ ðGf � GmÞV
Gf þ Gm � ðGf � GmÞV

� �
; G23 ¼

E22

2ð1þ m23Þ
;

where indices m and f denote matrix and fibre, respec-

tively. E, G, m and q are the modulus of elasticity, the
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modulus of rigidity, the Poisson�s ratio and the mass

density, respectively.
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