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Abstract

Previous work on the dynamics of defective structures, by the authors’ colleagues and other studies in the
literature, has revealed substantial variability in predicted vibration behaviour depending on the interface conditions.
In the current project the authors have set out to develop a strategy which retains the maximum amount of
common information concerning the linear regions of the structure, whilst allowing the maximum scope to vary
conditions at the (nonlinear) interface.

In this paper, the vibrational characteristics of a cracked Timoshenko beam are analysed. The study integrates the
finite element method and component mode synthesis. The beam divided into two components related by a
flexibility matrix which incorporates the interaction forces. These forces can be derived from fracture mechanics
theory as the inverse of the compliance matrix calculated using stress intensity factors and strain energy release rate
expressions. Each substructure is modelled by Timoshenko beam finite elements with two nodes and 3 degrees-of-
freedom (axial, transverse and rotation) at each node. © 1998 Flsevier Science Ltd. All rights reserved.
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Nomenclature K, stiffness matrix for Timoshenko beam
element
K., stiffness matrix for crack element
a crack length i compliance coefficients
A, B components M, C, K mass, damping and stiffness matrix
u, v displacements with respect to x- and y-axes q generalised displacement
v deflection D) external force
L length of the element w natural frequency
K shear correction factor ) modal matrix
G shear modulus ¥ mass normalised modal matrix
E Young’s modulus of elasticity P, S principal coordinates
1, section moment of inertia with respect to my, modal mass
' y-axis ki modal stiffness
.U kinetic and strain energy
U, strain energy of connectors
* To whom all correspondence should be addressed. K. connector matrix
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1. Introduction

The effect of cracks on the dynamic behaviour of
structural elements has been the subject of several in-
vestigations. Any accidental (such as cracks) or inten-
tional modification in a structure will affect its
dynamical behaviour and change its stiffness and
damping properties. Consequently, the natural fre-
quencies and mode shapes of the structure contain in-
formation about the location and dimensions of the
damage. Gudmundson [1, 2] investigated the influence
of small cracks on the natural frequencies of slender
structures by a perturbation method as well as by a
transfer matrix approach. Cawley and Adams [3] have
combined sensitivity analysis and the finite element
method to determine crack location. Yuen [4] proposed
a systematic finite element approach to determine the
relationship between damage location, damage size
and the corresponding changes in the eigen parameters
of a cantilever beam. Gounaris and Dimarogonas {5)
suggested a finite element model for dynamic analysis
of an edge-cracked beam. In this work, in order to
consider the discontinuity in both deflection and slope
due to the crack, two different shape functions were
needed for two segments separated by the crack. Qian
et al. [6] developed a finite element model of an edge-
cracked beam. They derived the stiffness matrix for a
cracked beam element by energy method. This stiffness
was given two values, one for the closed crack and the
other for the open crack. The sign of the stress on
crack faces determines the appropriate value, therefore,
the equation of motion was nonlinear requiring a nu-
merical method. Rizos et al. [7] modelled the crack as
a massless rotational spring, whose stiffness was calcu-
lated by using fracture mechanics. Shen and Taylor [8]
developed an identification procedure to determine the
crack characteristics from vibration measurements.
Shen and Chu [9] proposed a modified crack beam the-
ory and simulated numerically the dynamic response
of simply supported beams having a fatigue crack.
Ruotolo et al. [10] conducted a harmonic analysis of a
cantilever beam with a closing crack using a finite el-
ement model of the Euler beam. Very recently,
Abraham and Brandon [11,12], Brandon and
Abraham [13] presented a method of utilising substruc-
ture normal modes to predict the vibration properties
of a cantilever beam with a closing crack.

The full eigensolution of a structure containing sub-
structures each having large numbers of degrees-of-
freedom can be cumbersome and costly in computing
time. A method proposed by Hurty [14] enabled the
problem to be broken up into separate elements and
thus considerably reduced its complexity. His method
consisted of considering the structure in terms of sub-
structures and was called as ‘substructuring’.
Essentially, the method required the derivation of the

dynamic equations for each component and these
equations were then connected mathematically by
matrices which represent the physical displacements of
interface connection points on each component. In this
way, one large eigenproblem is replaced by several
smaller ones.

In many respects, the original rationale for such sub-
structuring techniques has been rendered obsolete by
the widespread availability of high performance com-
puters. However, there are applications where alterna-
tive justifications are valid, for example where the
results of independent analysis of individual structural
modules are to be used to predict the dynamics of an
assembled structure. In the present context the authors
wish to examine the response prediction of an
assembled structure under a variety of assumptions
concerning nonlinearity at the interface of substruc-
tures which are otherwise linear. As has been men-
tioned, Abraham and Brandon have followed a similar
strategy but with the characteristics of the interface
modelled using much less sophisticated analytical
assumptions [11-13].

The method used in this paper has been presented
for non-cracked structures by Ewins [15], Martin and
Ghlaim [16], Ghlaim [17], Moon and Cho [18] and
Nobari et al. [19]. For a cracked Timoshenko beam,
Abraham and Brandon [11] established an analytical
method which is extended by current work using finite
element method.

2. Theoretical model

The model chosen is a cantilever beam, of uniform
cross-section A4, having a transverse edge crack of
depth « at a variable position ¢ (Fig. 1).

The cantilever is divided into two components at the
crack section leading to a substructure approach. The
main advantage of this approach is that global non-
linear system with a local stiffness discontinuity is sep-
arated into two linear subsystems. Each component is
also divided into finite elements with two nodes and 3
degrees-of-freedom at each node as shown in Fig. 2.
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Fig. 1. Geometry of the cracked cantilever beam.
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Fig. 2. Components of whole structure and dividing them into
the finite number of elements.

2.1. Stiffness matrix of Timoshenko beam element

The analysis is developed from the procedure given
by Gounaris and Papazoglou [20] adapted to 3
degrees-of-freedom for each node, é = {u, v, ¥}. In
Fig. 2 representing a generic finite element, the applied
system forces F = {F;, F», F3} and the corresponding
responses are shown. (Gounaris and Papazoglou give
the stiffness matrix for the 2 degrees-of-freedom (v, ¥)
for bending in the xy plane for a two-noded
Timoshenko beam finite element [20]).

El,
K =i
12 6L —12 6L
6L 4L+ 120 —6L 217 — 12 0
—12 -6L 12 —6L

6L 207 — 120 —6L 417412«

where L is the length of an element, E is the Young’s
modulus of elasticity and I, is the section moment of
inertia with respect to the y-axis,

_

1= (2

k 1s the shear correction factor, G is the shear modulus
and A is the area of the cross-section of the element.
The stiffness matrix for the | degree-of-freedom {u}
local axial displacement in the x-direction is [21],

EA —
KIIZT[“II ]1] 3)

The total stiffness matrix for all the 3 degrees-of-free-
dom for each node and in accordance with the above
K;. K;; matrices according to displacement vector J is
now,

Kyt K12
Kill K;i2 K13 K;l4
K= K21 K22 K23 K24
4= | K21 K22
Ki31 K32 K;33 K34
K4l K42 K43 Kid4 | o
4)

2.2. The stiffness matrix for the crack

Considering the cracked node as a cracked element
of zero length and zero mass [5], the crack stiffness
matrix can be represented by equivalent compliance
coefficients. The compliance matrix was taken from
ref. [22], but adapted to the chosen beam element. The
compliance coefficients matrix can be written according
to the displacement vector 6 = {u, v, Y} as

o 0 e
C= 0 [60)] 0 . (5)

(&3] 0 €33 (3x3)

The inverse of the compliance matrix C™' is the stiff-
ness matrix of the nodal point. Therefore finally the
stiffness matrix of the cracked nodal element can be

written as
Kcr:[ [ -[C]*'] , ©)
(6x6)

= (S I (¢

3. Component mode analysis

Consider a component 4. The equation of motion
for this component is

Mga + Caga +Kaqq = fa(1) (N

where M4, C, and K are mass, damping and stiffness
matrices, respectively, for the component 4, ¢ and
f4(t) are the generalised displacement and external
force vectors, respectively. For undamped free vi-
bration analysis, Eq. (7) becomes

Muga +Kaqa = fa(D). (®)
Assuming that
{9) = (¢hsin(wr + B),  {§} =~ {P)sin(wr + ) (9)

and substituting them into Eq. (8), one ends up with
the standard free vibration equation for the component
A as,

0 Mad = Kad (10)
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Fig. 3. Two components connected by springs.

which gives eigenvalues ®*4l, ..., w4, and modal
matrix ¢, for the component 4. Making the trans-
formation

g4 = @ 4P4 (1

where p 4 is the principal coordinate vector. By premul-
tiplying ¢ and substituting Eq. (11), Eq. (8) becomes

(DML )P4 + (P 1KadIpa = S 4fu(D) (12)
where

My, = [my)

¢ 1Kad4 = [knm) (13)

where [m] and [k,;,] are modal mass and modal stiff-
ness matrices, respectively. Mass normalising the
modal matrix by

¢i/

By premultiplying W7 and substituting Eq. (15), Eq. (8)
becomes

I54 + &sq =¥ £40), (16)

where w? is a diagonal matrix comprising the eigen-

values of 4.
3.1. Coupling of the components

Consider two components A and B connected
together via springs, as illustrated in Fig. 3. The kinetic
and strain energy of the two components, in terms of
principal modal coordinates, can be given as

T= ;&TM&
1
U= ESTKS, an

where T and U are kinetic and strain energy, respect-
ively. M and K in Eq. (17) are

2
M:[(I) (;] K=[“(’)A a?z]. (18)

The strain energy of the connectors, in terms of princi-
pal modal coordinates, is

Uc = %ST‘I’TKC‘PS, (19)

where K¢ is the connector matrix comprising the

¥, = N (14) cracked nodal element’s stiffness matrix which can be
4 calculated by using Eq. (6). ¥ in Eq. (19) can be writ-
where W is mass normalised mode vector. By using ten as
the transformation ¥
po | Yo O (20)
ga =Y4s4 (15) 0 Y¥;
Table 1
Natural frequencies of the cracked Timoshenko beam for &/L = 0.20
E/L a/b ratio a/b ratio a/b ratio a/b ratio Intact
Nat. freqgs ratio 0.20 0.40 0.60 0.80 beam
Ist mode 0.20 1020.137 966.9525 842.2205 551.0463 1037.0189
2nd mode 0.20 6457.396 6454.483 6448.175 6436.008 6458.3438
3rd mode 0.20 17 872.91 17 596.57 16 944.56 15 512.55 17 960.564
4th mode 0.20 34 553.13 3310042 29 796.26 25 182.06 34 995.429
Table 2
Natural frequencies of the cracked Timoshenko beam for ¢/L = 0.40
&L a/b ratio a/b ratio a/b ratio a/b ratio Intact
Nat. fregs ratio 0.20 0.40 0.60 0.80 beam
1st mode 0.40 1030.095 1006.856 942.7322 724.2739 1037.0189
2nd mode 0.40 6389.394 6174.539 5689.841 4728.978 6458.3438
3rd mode 0.40 17 844.86 17 499.83 16 792.25 15 606.35 17 960.564
4th mode 0.40 34 866.97 34 420.09 32 971.51 29 180.94 34 995.429
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Table 3
Natural frequencies of the cracked Timoshenko beam for ¢/L = 0.60

¢/L a/b ratio afb ratio afb ratio ajb ratio Intact
Nat. freqs ratio 0.20 0.40 0.60 0.80 beam
st mode 0.60 1035.284 1029.262 1010.864 920.7848 1037.0189
2nd mode 0.60 6365.914 6071.655 5371.803 3798.216 6458.3438
3rd mode 0.60 17 807.94 17 359.27 16 478.82 15 153.19 17 960.564
4th mode 0.60 34 895.50 34 572.37 3371043 31 412.07 34 995.429
Table 4
Natural frequencies of the cracked Timoshenko beam for &/L = 0.80

E/L a/b ratio a/b ratio afb ratio a/b ratio Intact
Nat. freqs ratio 0.20 0.40 0.60 0.80 beam
1st mode 0.80 1036.884 1036.414 1034.943 1026.769 1037.0189
2nd mode 0.80 6440.057 6375.921 6174.710 5169.264 6458.3438
3rd mode 0.80 17 758.61 17 077.99 15 286.83 11 353.18 17 960.564
4th mode 0.80 34 393.87 32 639.52 29 529.79 26 230.83 34 995.429
The total strain energy of the system is, therefore, 4. Results and discussion

1 . .

Ur = EST(K +¥YTKcW)s, 2n The method described has been applied to a cracked

where K has been given by Eq. (18). The equation of
motion of the complete structure is

54+ (K +¥YTKcW)s = Y1), 22)

where W has been given by Eq. (20), A7) is the global
force vector for the system. From Eq. (22) the eigen-
values and eigenvectors of the cracked system can be
determined. After solving this equation, the displace-
ments for each component are calculated by using
Eq. (15).

-
:

Timoshenko beam as shown in Fig. | in which
L=02m, b =0.0078m, 4= 0.025m. Calculation
has been performed with the numerical values,
E=216x10° Nm™>, v=028 and p = 7.85 x 10°
kgm™. The finite element solutions are compared with
a proprietary software in order to check the accuracy
of the model the four lowest eigenfrequencies for var-
ious crack position and crack ratios are examined. In
Tables 1-4 the first four smaller eigenfrequencies of
the cracked Timoshenko beam and intact beam have
been given for various crack positions and crack ratios.
Fig. 4 shows a plot of the ratio of the first natural
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Fig. 4. Fundamental (first) frequency ratios for different crack positions.
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Fig. 5. Change in the fundamental natural frequency in terms of crack ratio.

frequency of the cracked beam respectively to the first
natural frequency of the corresponding intact
Timoshenko beam as a function of the crack depth
ratio a/b for several crack positions. The natural fre-
quencies of the cracked beam are lower than the natu-
ral frequencies of the corresponding intact beam, as
expected. These differences increase with the depth of
the crack. Due to the bending moment along the
beam, which is concentrated at the fixed end, a crack
near the free end will have a smaller effect on the fun-
damental frequency than a crack closer to the fixed
end and it can be said that the frequencies are almost
unchanged when the crack is located away from the
fixed end.

The results are compared with the experimental data
obtained by Wendtland [23] and theoretical data
obtained by Abraham [24] and Shen [25] as shown in

Fig. 5 and 6. The first, second and third modes are
shown on Fig. 7-9 for a crack respectively at & = 0.2
L, (=04 L and & = 0.6 L when the crack depth
ratio takes the values a/b = 0.2, /b = 0.4 and o/
b = 0.6.

5. Concluding remarks

In the methods observed in the literature compro-
mises have been made either in the representation
of the physics of the nonlinearities in defective struc-
tures or in the complexity of the structure which
can be analysed. For example, finite element studies
usually use a simplistic representation of the inter-
face mechanics whereas analytical studies require
simple boundary conditions. Neither is satisfactory in
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Fig. 6. Change in the fourth natural frequency in terms of crack ratio.
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Fig. 7. First mode shapes of cracked beam for (/L =0.2 and rfa=0.2, 0.4, 0.6.
isolation in practical design studies. It is believed that effects. To illustrate the effectiveness of the approach,
the current approach addresses both of these issues results have been compared with previous studies pub-
leading to the development of design tools which are lished in the literature leading to confidence in the val-
capable of accurate analysis of nonlinear interface idity of this approach.
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Fig. 8. Second mode shapes of cracked beam for /L =0.4 and r/fa=0.2, 0.4, 0.6.
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Fig. 9. Third mode shapes of cracked beams for £/L=0.6 and r/a=0.2, 0.4, 0.6.
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