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Abstract

This paper presents a novel numerical technique applicable to analyse the free vibration analysis of uniform and stepped
cracked beams with circular cross section. In this approach in which the finite element and component mode synthesis
methods are used together, the beam is detached into parts from the crack section. These substructures are joined by using
the flexibility matrices taking into account the interaction forces derived by virtue of fracture mechanics theory as the
inverse of the compliance matrix found with the appropriate stress intensity factors and strain energy release rate expres-
sions. To reveal the accuracy and effectiveness of the offered method, a number of numerical examples are given for free
vibration analysis of beams with transverse non-propagating open cracks. Numerical results showing good agreement with
the results of other available studies, address the effects of the location and depth of the cracks on the natural frequencies
and mode shapes of the cracked beams. Modal characteristics of a cracked beam can be employed in the crack recognition
process. The outcomes of the study verified that presented method is appropriate for the vibration analysis of uniform and
stepped cracked beams with circular cross section.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many engineering structures may have structural defects such as cracks due to long-term service, mechan-
ical vibrations, applied cyclic loads etc. Numerous techniques, such as non-destructive monitoring tests, can be
used to screen the condition of a structure. Novel techniques to inspect structural defects should be explored.
A crack in a structural element modifies its stiffness and damping properties and accordingly influences its
dynamical performance. In view of that, the natural frequencies and mode shapes of the structure hold
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information relating to the place and dimension of the damage. Vibration analysis allowing online inspection
is an attractive method to detect cracks in the structures. Investigation of dynamic behaviour of cracked struc-
tures has attracted the attention of several researchers in recent years (Cawley and Adams [1], Gounaris and
Dimarogonas [2], Krawczuk and Ostachowicz [3], Ruotolo et al., [4], Kisa et al. [5], Shifrin and Ruotolo [6],
Kisa and Brandon [7,8], Viola et al. [9], Krawczuk [10], Patil and Maiti [11], Kisa [12], Kisa and Gurel [13]).
Gudmundson [14] investigated the influence of small cracks on the natural frequencies of slender structures by
perturbation method as well as by transfer matrix approach. Yuen [15] proposed a methodical finite element
procedure to establish the relationship between damage location, damage size and the corresponding modifi-
cation in the eigen parameters of a cantilever beam. Rizos et al. [16] represented the crack as a massless rota-
tional spring, whose stiffness was calculated by employing fracture mechanics.

There are numerous studies on the vibration analysis of cracked beams with circular cross section and
shafts. Dimarogonas and Papadopoulos [17], by using the theory of cracked shafts with dissimilar moments
of inertia, investigated the vibration of cracked shafts in bending. Papadopoulos and Dimarogonas [18] stud-
ied the free vibration of shafts and presented the influence of the crack on the vibration behaviour of the
shafts. Kikidis and Papadopoulos [19] analysed the influence of the slenderness ratio of a non-rotating cracked
shaft on the dynamic characteristics of the structure. Zheng and Fan [20] studied the vibration and stability of
cracked hollow-sectional beams. Dong et al. [21] presented a continuous model for vibration analysis and
parameter identification of a non-rotating rotor with an open crack. They assumed that the cracked rotor
was an Euler–Bernoulli beam with circular cross section.

Studies on the vibration of stepped beams are carried out by a number of researchers. Jang and Bert [22]
presented the exact and numerical solutions for fundamental natural frequencies of stepped beams for various
boundary conditions. Wang [23] analysed the vibration of stepped beams on elastic foundations. Based on an
elemental dynamic flexibility method, Lee and Bergman [24] studied the vibration of stepped beams and rect-
angular plates. In their study, the structure with discontinues was divided into elemental substructures and the
displacement field for each was obtained in terms of its dynamic Green’s function. Lee and Ng [25] computed
the fundamental frequencies and critical buckling loads of simply supported stepped beams by using two algo-
rithms based on the Rayleigh–Ritz method. Rosa et al. [26] performed the free vibration analysis of stepped
beams with intermediate elastic supports. Naguleswaran [27] analysed the vibration and stability of an Euler–
Bernoulli stepped beam with an axial force.

There are few studies on the vibration of stepped beams with cracks. Employing the transfer matrix
method, Tsai and Wang [28] analysed the dynamic characteristics of a stepped shaft and a multi-disc shaft.
Nandwana and Maiti [29] presented a method based on measurement of natural frequencies for detection
of the location and size of a crack in a stepped cantilever beam. Chaudhari and Maiti [30] presented an exper-
imentally verified method for prediction of location and size of crack in stepped beams with cracks. Li [31,32]
analysed the vibratory characteristics of multi-step beams with an arbitrary number of cracks and concen-
trated masses.

Abraham and Brandon [33] and Brandon and Abraham [34] presented a method utilising substructure
normal modes to predict the vibration properties of a cantilever beam with a closing crack. The full eigen-
solution of a structure containing substructures each having large numbers of degrees of freedom can be
costly in computing time. A method known as component mode synthesis or substructure technique, pro-
posed by Hurty [35], made possible the problem to be broken up into separate elements and thus consid-
erably reduced its complexity. The component mode synthesis method was initially developed to ease the
study of very large structures but in this study it is used for another purpose. The advantage of the method
in the case of a non-linear cracked beam stems from the fact that, when a beam is split into components at
the crack section, each substructure becomes linear and analytical or numerical results are available for their
normal modes. Consequently, the initial non-linear system with local discontinuities in stiffness at the crack
sections is now composed of linear segments. An important characteristic of the model developed in this
study is that it allows discontinuity in the displacement field at the crack section when the crack is open.
The substructures are connected by an artificial and massless spring whose stiffness coefficients are functions
of the compliance coefficients. To the best of the authors’ knowledge, the presented method is applied for
the first time to the uniform and stepped cracked beams of circular cross section which commonly used in
engineering structures.



366 M. Kisa, M. Arif Gurel / International Journal of Engineering Science 45 (2007) 364–380
2. Theoretical model

The model chosen is a stepped cantilever beam of length L and diameters D1 (D1 ¼ 2R1Þ and D2 (D2 ¼ 2R2Þ,
having a transverse open edge crack of depth a at a variable position L1 (Fig. 1). Length of the first part is aL
in which a can be chosen between 0 and 1.

The beam is divided into two components at the crack section leading to a substructure approach. Accord-
ingly, as mentioned before, the global non-linear system with a local stiffness discontinuity is detached into
two linear subsystems. Each part is also divided into finite elements with two nodes and three degrees of free-
dom at each node as shown in Fig. 2.

2.1. Local flexibility matrix of a cracked beam with circular cross section

As a result of the strain energy concentration at the surrounding area of the crack tip, the existence of
cracks in structures is a resource of local flexibility which subsequently influences the dynamic performance
of the structures. These flexibility coefficients are expressed by stress intensity factors derived through Casti-
gliano’s theorem in the linear elastic range. The strain energy release rate, J, represents the elastic energy in
relation to a unit increase in length ahead of the crack front. For plane strain, J can be given as (Irwin [36])
J ¼ 1� m2

E
K2

I þ
1� m2

E
K2

II þ
1þ m

E
K2

III ð1Þ
where m, E, KI, KII and KIII are Poisson’s ratio, modulus of elasticity, and the stress intensity factors for the
mode I, II and III deformation types, respectively. As torsional effects will not be concerned about in this
study, simply mode I and mode II types of deformations are considered. The superposition of the stress inten-
sity factors gives, for the strain energy release rate, the subsequent expression
J ¼ 1� m2

E�
fðKIðP 1Þ þ KIðP 3ÞÞ2 þ KIIðP 2Þ2g ð2Þ
where P1, P2 and P3 are the axial force, shear force and bending moment, respectively, Fig. 2. E� ¼ E for plane
strain and E� ¼ E=ð1� m2Þ for plane stress. Bending moment P3 and the axial force P1 make the contribution
L

L1

a

x

y

z

L

2DD1

Fig. 1. Geometry of the stepped cantilever beam with a crack.
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Fig. 2. Components of cracked beam and their finite element model.
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to the opening mode, mode I. The edge sliding mode, mode II, receives a contribution from the shear force P2.
KI(P1), KI(P3) and KII(P2) can be written as follow (Tada et al. [37])
KI1 ¼
P 1

pR2

ffiffiffiffiffiffi
pa
p

F 1
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hx

� �
ð3Þ
where
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where the coefficient j is a numerical factor depending on the shape of the cross section and derived from Tim-
oshenko beam theory (Cowper [38]), a is the crack depth and hx is the height of the strip, Fig. 3, and written as
hx ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
ð9Þ
where R is the radius of the cross section of the beam.
If the stress intensity expressions are substituted into Eq. (2), the next expression is obtained
JðaÞ ¼ 1� m2
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Fig. 3. The geometry of the cracked circular cross section.
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If U is the strain energy of a cracked structure with a crack area A under the load Pi, then the relation
between J and U is
J ¼ oUðP i;AÞ
oA

ð11Þ
In accordance with the Castigliano’s theorem, the additional displacement caused by the crack in the direc-
tion of Pi can be given as
ui ¼
oUðP i;AÞ

oP i
ð12Þ
Substituting Eq. (11) into Eq. (12) gives the final expression between displacement and strain energy release
rate J as
ui ¼
o

oP i

Z
A

JðP i;AÞdA ð13Þ
Now, the flexibility coefficients which are the functions of the crack shape and the stress intensity factors
can be introduced as follows (Dimarogonas and Paipetis [39])
cij ¼
oui

oP j
¼ o

2

oP ioP j

Z
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Finally, the flexibility coefficients c11, c13, c22 and c33 are obtained as
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where b and ax are the boundary of the strip and the local crack depth, Fig. 3, respectively, and given as
b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðR� aÞ2

q
ax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
� ðR� aÞ

ð19Þ
Dimensionless flexibility coefficients are calculated numerically along with the subsequent expressions and
drawn in Fig. 4.
c�11 ¼ E�pRc11 c�13 ¼ E�pR2c13

c�22 ¼
E�pRc22

j2
c�33 ¼ E�pR3c33

ð20Þ
Since the shear force does not contribute to the opening mode of the crack, the compliance matrix, in rela-
tion to displacement vector dðu; v; hÞ, can be written as
C ¼
c11 0 c13

0 c22 0

c31 0 c33

2
64

3
75
ð3�3Þ

ð21Þ
The inverse of the compliance matrix C�1 is the stiffness matrix of the nodal point and given as
Kcr ¼ C�1 ð22Þ
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2.2. Coupling of the substructures by springs

Consider two undamped components X and Y joined together by means of springs capable of carrying
axial, shearing and bending effects, Fig. 5. For this system the equation of motion, in matrix notation, is given
as
MX 0

0 MY

� �
€qX

€qY

	 

þ

KX 0

0 KY

� �
qX

qY

	 

¼

fX ðtÞ
fY ðtÞ

	 

ð23Þ
where q and f(t) are the generalised displacement and external force vector, respectively. MX,MY and KX,KY

are mass and stiffness matrices for the components X and Y, respectively. Mass and stiffness matrices are taken
from the paper of Friedman and Kosmatka [40]. Eq. (23) gives the eigenvalue equation as
KX 0

0 KY

� �
�

x2
X 0

0 x2
Y

" #
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qY

	 

¼

0

0

	 

ð24Þ
Eq. (24) gives eigenvalues and modal matrix for the components X and Y.
On a particular spring, the exerted forces, FX and FY, are given by
F X ¼ KðqX � qY Þ
F Y ¼ KðqY � qX Þ

ð25Þ
where qX and qY are the displacements of the connection points, Fig. 5. Then Eq. (25) can be written as
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where KC is the connection matrix and given as
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cr �K�1
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Fig. 5. System of the components connected by spring.
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where Kcr is the stiffness matrix of the nodal point and given by Eq. (22). The force vector f(t) comprises ap-
plied forces g(t) and forces resulting from the springs d(t), such that
f ðtÞ ¼ gðtÞ þ dðtÞ ð28Þ

From the equilibrium
dðtÞ ¼ �
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¼ �KC
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ð29Þ
Substituting Eqs. (28) and (29) into Eq. (23) gives
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If modal vector /ij is normalised by the mass, the following expression is given
wij ¼
/ijffiffiffiffiffiffiffi
mjj
p ð32Þ
where wij is mass normalised mode vector. By using the transformation
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where sX and sY are the principal coordinate vectors. By premultiplying wT and substituting Eqs. (32) and (33)
into Eq. (31), gives
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Eq. (34), for free vibration, gives the eigenvalue equation as
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From Eq. (36) the eigenvalues and eigenvectors of the system can be determined. After solving this equation,
the displacements for each component are calculated by using Eq. (33).
3. Numerical examples and discussion

3.1. Uniform cantilever beam with a crack

Presented method, initially, has been applied to a uniform cracked cantilever beam with circular cross sec-
tion, Fig. 6. The geometrical properties of the beam are length L = 2 m, slenderness ratios R/L = 0.1, 0.06 and
0.04. Calculation has been performed with the numerical values, Young’s modulus E = 216 · 109 Nm�2, the
Poisson’s ratio m = 0.33 and mass density q = 7.85 · 103 kg m�3.
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Fig. 7 illustrates the first non-dimensional frequencies of the cracked beam as a function of the crack depth
ratio (a/D) for several slenderness ratios R/L (0.1, 0.06 and 0.04). In the analysis, the crack location is chosen
as L1/L = 0.2. In this study, non-dimensional natural frequencies are normalised according to next equation
Fig. 7.
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Fig. 6. Geometry of the uniform cantilever beam with a crack.

L 1/L =  0.2

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5

Crack ratio (a /D)

1s
t 

no
n-

di
m

en
si

on
al

 n
at

ur
al

 f
re

qu
en

cy

Present study R/L=0.1

Present study R/L=0.06

Present study R/L=0.04

Papadopoulos R/L=0.1

Papadopoulos R/L=0.06

Papadopoulos R/L=0.04

First non-dimensional natural frequencies as a function of crack depth ratio, for several slenderness ratios R/L = 0.1,0.06,0.04 and
osition L1/L = 0.2.

R/L = 0.1

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6
Crack ratio (a/D)

1s
t n

on
-d

im
en

si
on

al
 

fr
eq

ue
nc

y

L1/L=0.2
L1/L=0.4
L1/L=0.6
L1/L=0.8

R/L = 0.04

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6
Crack ratio (a/D)

1s
t n

on
-d

im
en

si
on

al
 

fr
eq

ue
nc

y L1/L=0.2
L1/L=0.4
L1/L=0.6
L1/L=0.8

R/L = 0.06

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6
Crack ratio (a/D)

1s
t n

on
-d

im
en

si
on

al
 

fr
eq

ue
nc

y

L1/L=0.2
L1/L=0.4
L1/L=0.6
L1/L=0.8

First non-dimensional natural frequency as a function of crack depth ratio, for several slenderness ratios R/L = 0.1,0.06,0.04, and
ocations L1/L = 0.2,0.4,0.6, and 0.8.



372 M. Kisa, M. Arif Gurel / International Journal of Engineering Science 45 (2007) 364–380
where xcr and xnc refer to the natural frequency of the cracked and non-cracked cantilever beams,
respectively.

The natural frequencies of the cracked beam are lower than those of corresponding intact beam, as
expected. Differences in the frequencies get higher as the depth of the crack increases. Because of the bending
moment along the beam, which is concentrated at the fixed end, a crack closer to the free end will have a smal-
ler effect on the fundamental frequency than a crack closer to the fixed end. It can be obviously seen from the
Fig. 7 that when the slenderness ratio (R/L) increases, the frequency reduction gets higher, too. The results
obtained by the current approach are compared with those of Papadopoulos and Dimarogonas [41] and as
R/L = 0.1

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Crack ratio (a/D)

2n
d 

no
n-

di
m

en
si

on
al

 
fr

eq
ue

nc
y

L1/L=0.2
L1/L=0.4
L1/L=0.6
L1/L=0.8

R/L = 0.06

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Crack ratio (a/D)
2n

d 
no

n-
di

m
en

si
on

al
 

fr
eq

ue
nc

y

L1/L=0.2
L1/L=0.4
L1/L=0.6
L1/L=0.8

R/L = 0.04

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Crack ratio (a/D)

2n
d 

no
n-

di
m

en
si

on
al

 
fr

eq
ue

nc
y

L1/L=0.2
L1/L=0.4
L1/L=0.6
L1/L=0.8

Fig. 9. Second non-dimensional natural frequency as a function of crack depth ratio, for several slenderness ratios R/L = 0.1,0.06,0.04,
and crack locations L1/L = 0.2,0.4,0.6, and 0.8.

R/L = 0.1, L1/L =0.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.4 0.8 1.2 1.6 2
x (m)

1s
t n

at
ur

al
 b

en
di

ng
 

m
od

e 
  

Intact
a/D=0.2
a/D=0.4
a/D=0.6

R/L = 0.1, L1/L =0.4

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.4 0.8 1.2 1.6 2
x (m)

1s
t n

at
ur

al
 b

en
di

ng
 

m
od

e 
  

Intact
a/D=0.2
a/D=0.4
a/D=0.6

R/L = 0.1, L1/L =0.6

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.4 0.8 1.2 1.6 2
x (m)

1s
t n

at
ur

al
 b

en
di

ng
 

m
od

e 
  

Intact
a/D=0.2
a/D=0.4
a/D=0.6

Fig. 10. First natural bending mode as a function of crack depth ratio, for slenderness ratio R/L = 0.1, and crack locations L1/
L = 0.2,0.4, and 0.6.
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is noticed from the Fig. 7, an excellent concurrence has been found between the results. Figs. 8 and 9 demon-
strate the first and second non-dimensional natural frequencies as a function of crack depth ratio for several
slenderness ratios R/L = 0.1,0.06, and 0.04, and crack locations L1/L = 0.2,0.4, 0.6, and 0.8. As perceptible
from the figures, the first frequency reduction is higher when the crack location L1/L is equal to 0.2, while
the frequency difference is higher in the second frequency when the crack location L1/L is between 0.4 and 0.6.

Figs. 10–12 illustrate the first, second and third natural bending mode shapes as a function of crack depth
ratio for different slenderness ratios and crack locations L1/L = 0.2, 0.4, and 0.6. From the mode shapes the
position of the crack can be clearly seen.
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Fig. 11. Second natural bending mode as a function of crack depth ratio, for slenderness ratio R/L = 0.1, and crack locations L1/
L = 0.2,0.4, and 0.6.
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Fig. 12. Third natural bending mode as a function of crack depth ratio, for slenderness ratio R/L = 0.04, and crack locations L1/
L = 0.2,0.4, and 0.6.
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Fig. 13. First, second and third non-dimensional natural frequencies as a function of crack depth ratio for several crack locations L1/
L = 0.1,0.3,0.5,0.7, and 0.9.
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Fig. 14. First, second and third natural bending mode shapes as a function of crack depth ratio for crack locations L1/L = 0.2 and 0.5.
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3.2. Stepped cantilever beam with a crack

Second example is selected as a stepped cantilever beam with a crack, Fig. 1. The material properties of the
beam for the present and subsequent instances are identical to the beam in the previous example. The length of
the beam is L = 4 m and the step part is at the middle of the beam (a = 0.5). In the first and second parts of the
beam the slenderness ratios are chosen as R1/L = 0.1 and R2/L = 0.04, respectively. Fig. 13 displays the first,
second and third non-dimensional natural frequencies as a function of crack depth ratio for several crack loca-
tions L1/L = 0.1,0.3, 0.5,0.7, and 0.9.

From Fig. 13, one can discern that the greater drops in the first and third natural frequencies are occurred
when the crack is located just at the step part, L1/L = 0.5, as the stiffness of the beam decreases due to the
stepped variation in diameter and the presence of crack. If the crack is located near the fixed end the reduction
in the second natural frequencies is the highest. When the first non-dimensional natural frequency is consid-
ered, the crack located at the step part of the beam causes more reductions in the natural frequencies com-
pared to a crack situated near to the fixed end.

Fig. 14 illustrates the first, second and third natural bending mode shapes as a function of crack depth ratio
for crack locations L1/L = 0.2,0.5. From the Fig. 14, it can be seen that when the crack is closer to step part of
the beam, L1/L = 0.5, the differences in the mode shapes of cracked and intact beams are getting higher.
Exploring the mode shapes, it can be observed that at the crack section the deviations of mode shapes of
cracked and intact beams are greater. Accordingly, utilising the mode shapes the position of the crack can
be detected easily.
L

a x
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z

L/3 L/3 L/3

L1

2D D1D1

Fig. 15. Geometry of a two-step simply supported beam with a crack.
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Fig. 16. First, second and third non-dimensional natural frequencies as a function of crack depth ratio for several crack locations L1/
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3.3. Two-step simply supported beam with a crack

Third example is selected as a two-step simply supported cracked beam with circular cross section, Fig. 15.
The length of the beam is L = 6 m and the step locations are at the 1/3 and 2/3 of the beam length. In the first,
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Fig. 17. First, second and third natural bending mode shapes as a function of crack depth ratio for crack locations L1/L = 0.16, 0.33, and
0.50.
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second and third parts of the beam, the slenderness ratios are chosen as R1/L = 0.04, R2/L = 0.1 and R3/
L = 0.04, respectively.

Fig. 16 demonstrates the first, second and third non-dimensional natural frequencies as a function of crack
depth ratio for several crack locations L1/L = 0.08,0.16, 0.25,0.33,0.41 and 0.50. Due to the symmetry, only
the results belong to the one half of the beam is shown in this figure. It is clear from the Fig. 16 that the larger
falls in the first, second and third natural frequencies are observed when the crack is located at the step, L1/
L = 0.33.

Fig. 17 illustrates the first, second and third natural bending mode shapes as a function of crack depth ratio
for crack locations L1/L = 0.16, 0.33, and 0.50. Similar to the natural frequencies, the largest changes in the
mode shapes of cracked and intact beams occur when a crack is located at the step, Fig. 17.

3.4. Two-step simply supported beam with two cracks

The last example is a two-step simply supported beam with two cracks, Fig. 18. The geometrical properties
of the beam are chosen identical to the one given in the former example. In the first, second and third parts of
the beam the slenderness ratios are chosen as R1/L = 0.04, R2/L = 0.1 and R3/L = 0.04, respectively.
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Fig. 18. Geometry of a two-step simply supported beam with two cracks.
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Fig. 19. First, second and third non-dimensional natural frequencies as a function of crack depth ratio for several crack locations L1/
L = 0.08 � L2/L = 0.16, L1/L = 0.25 � L2/L = 0.33, L1/L = 0.33 � L2/L = 0.41, L1/L = 0.41 � L2/L = 0.50, L1/L = 0.33 � L2/L = 0.66,
L1/L = 0.16 � L2/L = 0.83.
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Fig. 19 illustrates the first, second and third non-dimensional natural frequencies as a function of crack
depth ratio for several crack locations L1/L = 0.08 � L2/L = 0.16, L1/L = 0.25 � L2/L = 0.33, L1/
L = 0.33 � L2/L = 0.41, L1/L = 0.41 � L2/L = 0.50, L1/L = 0.33 � L2/L = 0.66, L1/L = 0.16 � L2/L = 0.83.
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Fig. 20. First, second and third natural bending mode shapes as a function of crack depth ratio for crack locations L1/L = 0.08 � L2/
L = 0.16, L1/L = 0.16 � L2/L = 0.83, L1/L = 0.33 � L2/L = 0.41, L1/L = 0.33 � L2/L = 0.66.
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It is clear from the Fig. 19 that the larger decreases in the first, second and third natural frequencies are seen
when the cracks are located at the step parts, L1/L = 0.33 � L2/L = 0.66.

Fig. 20 shows the first, second and third natural bending mode shapes as a function of crack depth ratio for
crack locations L1/L = 0.08 � L2/L = 0.16, L1/L = 0.16 � L2/L = 0.83, L1/L = 0.33 � L2/L = 0.41, L1/
L = 0.33 � L2/L = 0.66. From the Fig. 20, the effects of the step parts of the beam where the cracks are
located on the mode shapes can be noticed.

4. Conclusions

In this paper a new approach for the vibration analysis of uniform and stepped cracked beams with circular
cross sections is presented. In the method, the component mode synthesis technique accompanied by the finite
element method is used and a non-linear problem separated into linear subsystems. As the whole structure is
detached from the crack section, making use of the present approach is believed to offer an efficient method
capable of investigating the non-linear interface effects such as contact and impact that occur when crack
closes.

It is revealed that the knowledge of modal data of cracked beams forms an important aspect in assessing the
structural failure. Presented four numerical examples verified that the proposed method is effective end versa-
tile. Besides, it is shown that the crack locations and sizes can notably influence the modal features, i.e. natural
frequencies and mode shapes, of the cracked beams especially when the cracks are located at the step parts of
the beams.

It is evident that, the application of the present study is restricted to the vibration analysis of beams with
non-propagating open cracks. Some potential extensions, which are left for future works, of the present study
are the investigation of the beams with other cross sections and inclusion of contact and impact effects when
the crack breathes.
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