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Abstract

This paper proposes a numerical model that combines the finite element and component mode synthesis methods for
the modal analysis of beams with circular cross section and containing multiple non-propagating open cracks. The model
virtually divides a beam into a number of parts from the crack sections and couples them by flexibility matrices considering
the interaction forces that are derived from the fracture mechanics theory. The main feature of the presented approach is
that the natural frequencies and mode shapes of a beam with an arbitrary number of cracks and any kind of two end con-
ditions can be conveniently determined with a reasonable computational time. Three numerical examples are given to
investigate the effects of location and depth of cracks on the natural frequencies and mode shapes of the beams. Moreover,
it is shown through these examples that the evaluation of modal data obtained by the proposed model gives valuable infor-
mation about the location and size of defects in the beams.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Mechanical vibrations, long-term service or applied cyclic loads may result in the initiation of structural
defects such as cracks in the structures. Accordingly, the determination of the effects of these deficiencies
on the vibration safety and stability of the structures is an important task of engineers. Cracks in a structural
element modify its stiffness and damping properties. In view of that, the modal data of the structure hold
information relating to the place and dimension of the defect. Vibration analysis allowing online inspection
is a novel and attractive method to detect cracks in the structures. The effects of the cracks on the dynamical
behaviour of the structures have been the subject of many researchers in the past (Cawley and Adams [1],
Gounaris and Dimarogonas [2], Shen and Chu [3], Krawczuk and Ostachowicz [4], Ruotolo et al. [5], Kisa
et al. [6], Shifrin and Ruotolo [7], Kisa and Brandon [8,9], Viola et al. [10], Krawczuk [11], Patil and Maiti
0013-7944/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a crack depth
A crack area
u, v displacements with respect to x and y axes
h rotation about z axis
m number of components
L length of the beam
D diameter of the beam
R radius of the beam
R/L slenderness ratio
a/D crack depth ratio
Li/L crack position
E Young’s modulus of elasticity
m Poisson’s ratio
q material density
KI stress intensity factor for mode I
KII stress intensity factor for mode II
KIII stress intensity factor for mode III
J strain energy release rate
U strain energy
cij flexibility coefficients
C flexibility matrix
Ki stiffness matrix for element i
Mi mass matrix for element i
Kcr stiffness matrix induced by the crack
KC connection matrix
F exerted force of a spring
Pi applied loads
ui additional displacement caused by the crack
q generalised displacement vector
f(t) external force vector
g(t) applied force vector
d(t) spring force vector
s principal coordinate vector
x natural frequency
xcr natural frequency of the cracked beam
xnc natural frequency of the non-cracked beam
/ij modal matrix
wij mass normalised modal matrix
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[12], Kisa [13]). Gudmundson [14] investigated the influence of small cracks on the natural frequencies of slen-
der structures by perturbation method as well as by transfer matrix approach. Yuen [15] proposed a method-
ical finite element procedure to establish the relationship between damage location, damage size and the
corresponding modification in the eigenparameters of a cantilever beam. Qian et al. [16] developed a finite ele-
ment model of an edge-cracked beam. Rizos et al. [17] denoted the crack as a massless rotational spring, whose
stiffness was computed by making use of the fracture mechanics. Shen and Taylor [18] presented a detection
process to reveal the crack characteristics from vibration measurements.

Most studies on the vibration analysis of circular beams and shafts deal with single crack. Dimarogonas
and Papadopoulos [19], by using the theory of cracked shafts with dissimilar moments of inertia, investigated
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the vibration of cracked shafts in bending. Papadopoulos and Dimarogonas [20] studied the free vibration of
shafts and presented the influence of the crack on the vibration behaviour of the shafts. Kikidis and Papad-
opoulos [21] analysed the influence of the slenderness ratio of a non-rotating cracked shaft on the dynamic
characteristics of the structure. Zheng and Fan [22] studied the vibration and stability of cracked hollow-sec-
tional beams. Dong et al. [23] presented a continuous model for vibration analysis and parameter identifica-
tion of a non-rotating cracked rotor. They assumed that the cracked rotor was an Euler–Bernoulli beam with
circular cross section. The occurrence of multiple cracks has been studied by a few researchers. Tsai and Wang
[24], Darpe et al. [25] and Sekhar [26,27] analysed the vibration of multi-crack rotors. Ruotolo and Surace [28]
presented the damage assessment of multiple cracked beams by using the modal parameters of the lower
modes. Zheng and Fan [29] analysed free vibration of a non-uniform beam with multiple cracks by using a
kind of modified Fourier series. Li [30,31] offered an analytical formulation using boundary conditions and
recursive formulas by which he analysed the free vibration of beams with an arbitrary number of cracks
and concentrated masses. Khiem and Lien [32] and Lin et al. [33] used the transfer matrix method for the nat-
ural frequency analysis of beams with an arbitrary number of cracks. Ruotolo and Surace [34] proposed the
smooth function method to calculate the natural frequencies of a vibrating isotropic bar with multiple cracks.
Patil and Maiti [35] experimentally verified a method for prediction of location and size of multiple cracks
based on measurement of natural frequencies of slender multi-cracked cantilever beams. Chang and Chen
[36] presented a technique for the detection of the location and size of cracks in the multiple cracked beams
by spatial wavelet based approach. Recently, Binici [37] investigated the vibration of beams with multiple open
cracks subjected to axial force. His method uses one set of end conditions as initial parameters for determining
the mode shape functions.

Abraham and Brandon [38] and Brandon and Abraham [39] presented a method utilising substructure nor-
mal modes to predict the vibration properties of a cantilever beam with a closing crack. The full eigensolution
of a structure containing substructures each having large number of degrees of freedom can be costly in com-
puting time. A method known as component mode synthesis or substructure technique, proposed by Hurty
[40], enabled the problem to be broken up into separate elements and thus considerably reduced its complex-
ity. The component mode synthesis method was initially developed to ease the study of very large structures
but in this study it is used for another purpose. The advantage of the method in the case of a non-linear
cracked beam stems from the fact that, when a beam is split into components from the crack sections, each
substructure becomes linear and analytical or numerical results are available for their normal modes. Conse-
quently, the initial non-linear system with local discontinuities in stiffness at the crack sections is now com-
posed of a number of linear segments. An important characteristic of the model developed in this study is
that it allows discontinuity in the displacement field at the crack sections when the crack is open. Substructures
are connected by artificial and massless springs whose stiffness coefficients are functions of the flexibility coef-
ficients. To the best of the authors’ knowledge, the presented method is applied for the first time to the multi-
cracked beams of circular cross section which commonly used in engineering structures.
2. Theoretical model

The model chosen is a cantilever beam of length L and diameter D (D = 2R), having transverse open edge
cracks of depth ai at variable positions Li (Fig. 1). The beam has m � 1 cracks; therefore it is divided into m

components from the crack sections leading to a substructure approach. Accordingly, as aforementioned, the
global non-linear system with local stiffness discontinuities is detached into m linear subsystems. Every part is
also broken up into finite elements with two nodes and three degrees of freedom at the each node as shown in
Fig. 2.
2.1. Evaluation of local flexibility matrix of a cracked beam with circular cross section

As a result of the strain energy concentration at the neighbouring area of the crack tip, the existence of
cracks in structures is a resource of local flexibility which consequently influences the dynamic properties of
the structures. In the linear elastic range, these flexibility coefficients are expressed by stress intensity factors
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Fig. 2. Finite element model of the multi-cracked circular beam.
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Fig. 1. Geometry of a multi-cracked beam with circular cross section.
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derived through Castigliano’s theorem. The strain energy release rate, J, represents the elastic energy in rela-
tion to a unit increase in length ahead of the crack front. For plane strain, J can be given as (Irwin [41])
J ¼ 1� m2

E
K2

I þ
1� m2

E
K2

II þ
1þ m
E

K2
III ð1Þ
where m, E, KI, KII and KIII are Poisson’s ratio, modulus of elasticity and the stress intensity factors for the
mode I, II and III deformation types, respectively. As torsional effects will not be concerned about in this
study, simply mode I and mode II types of deformations are considered. If U is the strain energy of a cracked
structure with a crack area A under the load Pi, then the relation between J and U is
J ¼ oUðP i;AÞ
oA

ð2Þ
Consistent with the Castigliano’s theorem, the additional displacement caused by the crack in the direction of
Pi can be given as
ui ¼
oUðP i;AÞ

oP i
ð3Þ
Substituting Eq. (2) into Eq. (3) gives the final expression between displacement and strain energy release rate
J as
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Fig. 3. Non-dimensional compliance coefficients as a function of the crack depth ratio a/D.
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ui ¼
o

oP i

Z
A
JðP i;AÞdA ð4Þ
Now the flexibility coefficients which are the functions of the crack shape and the stress intensity factors can be
introduced as follows:
cij ¼
oui
oP j

¼ o2

oP ioPj

Z
A
JðP i;AÞdA ð5Þ
The flexibility coefficients cij are obtained from the fracture mechanics method proposed by Dimarogonas and
Paipetis [42]. Dimensionless flexibility coefficients are calculated numerically and drawn in Fig. 3. Since the
shear force does not contribute to the opening mode of the crack, the flexibility matrix, in relation to displace-
ment vector d(u,v,h), can be written as
C ¼
c11 0 c13
0 c22 0

c31 0 c33

2
64

3
75

ð3�3Þ

ð6Þ
Using the flexibility matrix, the stiffness matrix induced by a crack is given as
Kcr ¼
C�1 �C�1

�C�1 C�1

" #
ð6�6Þ

ð7Þ
In the literature, there are flexibility coefficient equations relating to the other cross sections. For instance,
regarding a rectangular cross section one can find the flexibility coefficients in the study of Kisa and Brandon
[8].

2.2. Coupling of the substructures by springs

Consider all components (i = 1,2, . . . ,m) which are undamped and connected to each other by means of
springs capable of carrying axial, shearing and bending effects, Fig. 4. The stiffness of each spring is deter-
mined from Eq. 7. For an uncracked beam with m elements the equation of motion, in matrix notation, is
given as
M1 0 . . . 0

0 M2 . . . 0

. . . . . . . . . . . .

0 0 0 Mm

2
6664

3
7775

€q1
€q2
. . .

€qm

8>>><
>>>:

9>>>=
>>>;

þ

K1 0 . . . 0

0 K2 . . . 0

. . . . . . . . . . . .

0 0 0 Km

2
6664

3
7775

q1
q2
. . .

qm

8>>><
>>>:

9>>>=
>>>;

¼

f1ðtÞ
f2ðtÞ
. . .

fmðtÞ

8>>><
>>>:

9>>>=
>>>;

ð8Þ
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Fig. 4. Coupling the components by springs.
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where q and f(t) are the generalised displacement and external force vector, respectively. Mi and Ki,
i = 1, . . . ,m, are mass and stiffness matrices for the elements, respectively. Mass and stiffness matrices are
taken from the paper of Friedman and Kosmatka [43]. Eq. (8) gives the eigenvalue equation as
K1 0 . . . 0

0 K2 . . . 0

. . . . . . . . . . . .

0 0 0 Km

2
6664

3
7775�

x2
1 0 . . . 0

0 x2
2 . . . 0

. . . . . . . . . . . .

0 0 0 x2
m

2
6664

3
7775

M1 0 . . . 0

0 M2 . . . 0

. . . . . . . . . . . .

0 0 0 Mm

2
6664

3
7775

0
BBB@

1
CCCA

q1
q2
. . .

qm

8>>><
>>>:

9>>>=
>>>;

¼

0

0

. . .

0

8>>><
>>>:

9>>>=
>>>;

ð9Þ
By utilising Eq. (9) natural frequencies and mode shapes of each component can be obtained.
On particular springs, the exerted forces F1, F2L,F2R,F3L, . . . ,F(m�1)R and Fm, can be given as
F 1 ¼ Kcr;1ðq1 � q2LÞ
F 2L ¼ Kcr;1ðq2L � q1Þ
F 1 ¼ �F 2L

F 2R ¼ Kcr;2ðq2R � q3LÞ
F 3L ¼ Kcr;2ðq3L � q2RÞ
F 2R ¼ �F 3L

. . .

F ðm�1ÞR ¼ Kcr;m�1ðqðm�1ÞR � qmÞ

F m ¼ Kcr;m�1ðqm � qðm�1ÞRÞ

F ðm�1ÞR ¼ �F m

ð10Þ
where q1,q2L,q2R,q3L, . . . ,q(m�1)R and qm are the displacements of the connection points and Kcr,i,
i = 1, . . . ,m � 1, are the stiffness matrices due to cracks and developed by Eq. (7). Here L and R stand for
the left and right ends of a component, respectively. Eq. (10) can be written as
F 1

F 2L

F 2R

F 3L

. . .

F ðm�1ÞR

F m

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼ ½KC�

q1
q2L
q2R
q3L
. . .

qðm�1ÞR

qm

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð11Þ
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where KC is the connection matrix and given as
KC ¼

Kcr;1 0 . . . 0

0 Kcr;2 . . . 0

. . . . . . . . . . . .

0 0 . . . Kcr;m�1

2
666664

3
777775 ð12Þ
The force vector f(t) comprises applied forces g(t) and forces resulting from the springs d(t), such that
fðtÞ ¼ gðtÞ þ dðtÞ ð13Þ
From the equilibrium
8 9
dðtÞ ¼ �½KC�

q1
q2L
q2R
q3L
. . .

qðm�1ÞR

qm

>>>>>>>>>>><
>>>>>>>>>>>:

>>>>>>>>>>>=
>>>>>>>>>>>;

ð14Þ
Assume that
F iL

F iR

� �
and

qiL
qiR

� �
are denoted as

F iL

F iR

� �
¼ fF ig,

qiL
qiR

� �
¼ fqig, i = 2, . . . ,m � 1. Substituting

Eqs. (13) and (14) into Eq. (8) gives
M1 0 . . . 0

0 M2 . . . 0

. . . . . . . . . . . .

0 0 0 Mm

2
666664

3
777775

€q1

€q2

. . .

€qm

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ

K1 0 . . . 0

0 K2 . . . 0

. . . . . . . . . . . .

0 0 0 Km

2
666664

3
777775

q1

q2

. . .

qm

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼ �½KC�

q1

q2

. . .

qm

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ

g1ðtÞ

g2ðtÞ

. . .

gmðtÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð15Þ
or
M1 0 . . . 0

0 M2 . . . 0

. . . . . . . . . . . .

0 0 0 Mm

2
66664

3
77775

€q1

€q2

. . .

€qm

8>>>><
>>>>:

9>>>>=
>>>>;

þ

K1 0 . . . 0

0 K2 . . . 0

. . . . . . . . . . . .

0 0 0 Km

2
66664

3
77775þ ½KC�

0
BBBB@

1
CCCCA

q1

q2

. . .

qm

8>>>><
>>>>:

9>>>>=
>>>>;

¼

g1ðtÞ
g2ðtÞ
. . .

gmðtÞ

8>>>><
>>>>:

9>>>>=
>>>>;

ð16Þ
If modal matrix /ij is normalised by the mass, the following expression is given
wij ¼
/ijffiffiffiffiffiffiffi
mjj

p ð17Þ
where wij is mass normalised modal matrix. Following transformation is used
q1
q2
. . .

qm

8>>><
>>>:

9>>>=
>>>;

¼

W1 0 . . . 0

0 W2 . . . 0

. . . . . . . . . . . .

0 0 . . . Wm

2
6664

3
7775

s1
s2
. . .

sm

8>>><
>>>:

9>>>=
>>>;

ð18Þ
where si, i = 1, . . . ,m, are the principal coordinate vectors. By premultiplying wT and substituting Eqs. (17) and
(18) into Eq. (16), gives
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I 0 . . . 0

0 I . . . 0

. . . . . . . . . . . .

0 0 . . . I

2
666664

3
777775

€s1

€s2

. . .

€sm

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ

x2
1 0 . . . 0

0 x2
2 . . . 0

. . . . . . . . . . . .

0 0 . . . x2
m

2
666664

3
777775

s1

s2

. . .

sm

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ

W1 0 . . . 0

0 W2 . . . 0

. . . . . . . . . . . .

0 0 . . . Wm

2
666664

3
777775

T

½KC�

W1 0 . . . 0

0 W2 . . . 0

. . . . . . . . . . . .

0 0 . . . Wm

2
666664

3
777775

s1

s2

. . .

sm

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼

W1 0 . . . 0

0 W2 . . . 0

. . . . . . . . . . . .

0 0 . . . Wm

2
666664

3
777775

T g1ðtÞ

g2ðtÞ

. . .

gmðtÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð19Þ
where
I ¼ wT
1M1w1 ¼ wT

2M2w2 ¼ � � � ¼ wT
mMmwm

x2
1 ¼ wT

1K1w1

x2
2 ¼ wT

2K2w2

. . .

x2
m ¼ wT

mKmwm

ð20Þ
Eq. (19), for free vibration, gives the eigenvalue equation as
x2
1 0 . . . 0

0 x2
2 . . . 0

. . . . . . . . . . . .

0 0 . . . x2
m

2
6664

3
7775þ

W1 0 . . . 0

0 W2 . . . 0

. . . . . . . . . . . .

0 0 . . . Wm

2
6664

3
7775

T

½KC�

W1 0 . . . 0

0 W2 . . . 0

. . . . . . . . . . . .

0 0 . . . Wm

2
6664

3
7775�x2

I 0 . . . 0

0 I . . . 0

. . . . . . . . . . . .

0 0 . . . I

2
6664

3
7775

0
BBBB@

1
CCCCA

s1
s2
. . .

sm

8>>><
>>>:

9>>>=
>>>;

¼

0

0

. . .

0

8>>><
>>>:

9>>>=
>>>;

ð21Þ
From Eq. (21) the natural frequencies and mode shapes of the system can be determined. After solving this
equation, the displacements for each component are calculated by using Eq. (18). It is obvious that when there
is no crack in the beam, the elements of KC in Eq. (21) become zero.

3. Numerical examples and discussion

3.1. Cantilever beam with a crack

Most studies on the vibration analysis of circular cross sectional beams and shafts deal with single crack. In
the literature, there are some studies on the vibration of multi-cracked circular beams such as the studies of
Darpe et al. [25] and Sekhar [26,27]. Different from the current investigation, in these studies the circular beam
was assumed to be rotating, for that reason to validate the presented method a single crack cantilever beam
with circular cross section is considered. The geometrical properties of the beam are chosen as; length L = 2 m,
slenderness ratio R/L = 0.1, 0.06 and 0.04. Calculation has been performed with the numerical values;
Young’s modulus E = 216 · 109 N m�2, Poisson’s ratio m = 0.33 and material density q = 7.85 · 103 kg m�3.

Fig. 5 illustrates the first non-dimensional frequencies of the cracked beam as a function of the crack
depth ratio (a/D) for several slenderness ratios R/L (0.1, 0.06, and 0.04). In the analysis the crack location
is L1/L = 0.2. First non-dimensional natural frequencies are normalised according to next equation
x ¼ xcr=xnc ð22Þ

where xcr and xnc refer to the natural frequency of the cracked and non-cracked cantilever beams,
respectively.
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The natural frequencies of the cracked beam are lower than those of corresponding intact beam, as
expected. Differences in the frequencies get higher as the depth of the crack increases. Because of the bending
moment along the beam, which is concentrated at the fixed end, a crack closer to the free end will have a smal-
ler effect on the fundamental frequency than a crack closer to the fixed end. It can be obviously seen from the
Fig. 5 that when the slenderness ratio (R/L) increases, the frequency reduction gets higher, too. The results
obtained by the current approach are compared with those of Papadopoulos and Dimarogonas [44] and
the maximum differences between the results for the slenderness ratios (R/L) 0.1, 0.06 and 0.04 are calculated
as 1.83%, 1.61% and 1.23%, respectively. As it is noticed from the Fig. 5, an excellent concurrence has been
found between the results.
3.2. Cantilever beam with multiple cracks

Second example is chosen as a cantilever beam with three cracks. In the analysis, it is assumed that all
cracks are at the same depth. The material and geometrical properties of the beam are identical to those of
former case. For the present and subsequent examples, the slenderness ratio is taken as R/L = 0.04. Fig. 6
presents the first, second and third non-dimensional natural frequencies as a function of crack depth
ratio for several crack locations (L1/L = 0.1, L2/L = 0.2, L3/L = 0.3), (L1/L = 0.1, L2/L = 0.5, L3/L = 0.9),
(L1/L = 0.4, L2/L = 0.5, L3/L = 0.6) and (L1/L = 0.7, L2/L = 0.8, L3/L = 0.9). Non-dimensional natural fre-
quencies are normalised according to Eq. (22). It is evident from the figure that the first frequency reduction is
higher when the cracks are located near the fixed end (L1/L = 0.1, L2/L = 0.2, L3/L = 0.3), while the fre-
quency differences are higher in the second and third natural frequencies when the cracks are located
near the midpoint (L1/L = 0.4, L2/L = 0.5, L3/L = 0.6) and around 3/4 of the beam length (L1/L = 0.7,
L2/L = 0.8, L3/L = 0.9), respectively. When the cracks are located near the free end, the first natural frequency
is almost unaffected even if the crack depth ratio is relatively high. The second and third natural frequen-
cies are less affected when the cracks are near the fixed end and at the positions of (L1/L = 0.1, L2/L = 0.5,
L3/L = 0.9), respectively (see Fig. 6). As stated in the previous example, the changes in the natural frequencies
get higher as the depth of the cracks increases.

Figs. 7–9 show the first, second and third natural bending mode shapes as a function of various crack
depth ratios (a/D = 0.2, a/D = 0.4, a/D = 0.6) for several crack locations (L1/L = 0.1, L2/L = 0.2,
L3/L = 0.3), (L1/L = 0.1, L2/L = 0.5, L3/L = 0.9), (L1/L = 0.4, L2/L = 0.5, L3/L = 0.6) and (L1/L = 0.7,
L2/L = 0.8, L3/L = 0.9). From the mode shapes the position of the cracks can be clearly discerned. In some
cases, from the mode shapes the crack detection may be very difficult and for these circumstances the natural
frequencies can give useful information about the crack location. For instance, the first natural frequency
changes are more useful than the first mode shapes when the cracks are located near the fixed end (see
Figs. 6 and 7). As a consequence, in an inspection both natural frequencies and mode shapes should be
considered.
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Fig. 6. First, second and third non-dimensional natural frequencies as a function of crack depth ratio for several crack locations
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Fig. 7. First natural bending mode as a function of various crack depth ratios (a/D = 0.2, a/D = 0.4, a/D = 0.6) for several crack locations
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L2/L = 0.8, L3/L = 0.9).
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Fig. 8. Second natural bending mode as a function of various crack depth ratios (a/D = 0.2, a/D = 0.4, a/D = 0.6) for several crack
locations (L1/L = 0.1, L2/L = 0.2, L3/L = 0.3), (L1/L = 0.1, L2/L = 0.5, L3/L = 0.9), (L1/L = 0.4, L2/L = 0.5, L3/L = 0.6) and
(L1/L = 0.7, L2/L = 0.8, L3/L = 0.9).
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Fig. 9. Third natural bending mode as a function of various crack depth ratios (a/D = 0.2, a/D = 0.4, a/D = 0.6) for several crack
locations (L1/L = 0.1, L2/L = 0.2, L3/L = 0.3), (L1/L = 0.1, L2/L = 0.5, L3/L = 0.9), (L1/L = 0.4, L2/L = 0.5, L3/L = 0.6) and
(L1/L = 0.7, L2/L = 0.8, L3/L = 0.9).
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3.3. Simply supported beam with multiple cracks

Third example is chosen as a simply supported beam having three cracks of equal depths as shown in
Fig. 10. Again, the material and geometrical properties of the beam are identical to those of previous cases.
Fig. 11 presents the first, second and third non-dimensional natural frequencies as a function of crack depth
ratio for several crack locations (L1/L = 0.1, L2/L = 0.2, L3/L = 0.3), (L1/L = 0.1, L2/L = 0.5, L3/L = 0.9),
(L1/L = 0.4, L2/L = 0.5, L3/L = 0.6) and (L1/L = 0.7, L2/L = 0.8, L3/L = 0.9).

Consider two cases in which the cracks are located at L1/L = 0.1, L2/L = 0.2, L3/L = 0.3 and L1/L = 0.7,
L2/L = 0.8, L3/L = 0.9, respectively. As geometry of the beam and aforementioned two cases are symmetric,
the changes in the natural frequencies are the same, Fig. 11. If the cracks are located near the support points
(L1/L = 0.1, L2/L = 0.2, L3/L = 0.3) or (L1/L = 0.7, L2/L = 0.8, L3/L = 0.9) then the reduction in the second
and third natural frequencies is higher. Conversely, the greater drops in the first natural frequency are
observed when the cracks are located close to the midpoint of the beam (L1/L = 0.4, L2/L = 0.5,
L3/L = 0.6). This is for the reason that the crack positions are at the site where the first mode bending
moment, which dominates the behaviour of the cracked beam, is highest.
1a
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y

z
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Fig. 10. Geometry of the simply supported circular beam with multiple cracks.
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Fig. 11. First, second and third non-dimensional natural frequencies as a function of crack depth ratio for several crack locations
(L1/L = 0.1, L2/L = 0.2, L3/L = 0.3), (L1/L = 0.1, L2/L = 0.5, L3/L = 0.9), (L1/L = 0.4, L2/L = 0.5, L3/L = 0.6) and (L1/L = 0.7,
L2/L = 0.8, L3/L = 0.9).
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Figs. 12–14 illustrate the first, second and third natural bending mode shapes as a function of crack depth
ratios for various crack locations. It is clear from the mode shapes that the position of the cracks can be
L 1/L = 0.1, L 2/L =0.2, L 3/L =0.3
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Fig. 12. First natural bending mode as a function of various crack depth ratios (a/D = 0.2, a/D = 0.4, a/D = 0.6) for several crack
locations (L1/L = 0.1, L2/L = 0.2, L3/L = 0.3), (L1/L = 0.1, L2/L = 0.5, L3/L = 0.9), (L1/L = 0.4, L2/L = 0.5, L3/L = 0.6) and
(L1/L = 0.7, L2/L = 0.8, L3/L = 0.9).
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Fig. 13. Second natural bending mode as a function of various crack depth ratios (a/D = 0.2, a/D = 0.4, a/D = 0.6) for several crack
locations (L1/L = 0.1, L2/L = 0.2, L3/L = 0.3), (L1/L = 0.1, L2/L = 0.5, L3/L = 0.9), (L1/L = 0.4, L2/L = 0.5, L3/L = 0.6) and
(L1/L = 0.7, L2/L = 0.8, L3/L = 0.9).
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Fig. 14. Third natural bending mode as a function of various crack depth ratios (a/D = 0.2, a/D = 0.4, a/D = 0.6) for several crack
locations (L1/L = 0.1, L2/L = 0.2, L3/L = 0.3), (L1/L = 0.1, L2/L = 0.5, L3/L = 0.9), (L1/L = 0.4, L2/L = 0.5, L3/L = 0.6) and
(L1/L = 0.7, L2/L = 0.8, L3/L = 0.9).
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evidently determined, as a consequence it can be concluded that mode shapes give useful information espe-
cially about the position of cracks.
4. Conclusions

In this paper, a new numerical approach to implement the free vibration analysis of circular cross sectional
beams containing multiple non-propagating open cracks is presented. In the approach the component mode
synthesis technique is combined with the finite element method and a non-linear problem separated into linear
subsystems. The validation of the proposed method is carried out with three examples and it is shown that the
modal characteristics, i.e. natural frequencies and mode shapes of a beam are depend on the location and
depth of cracks. Moreover, it is revealed that the modal data provides useful information for the determina-
tion of structural defects such as cracks.

As the whole structure is detached from the crack sections, the present model enables also one to investigate
the non-linear interface effects such as contact and impact when the cracks breathe. Although the analysis of
the present study is mainly for beams with constant cross sections, extension to tapered beams can be carried
out easily. Other possible extensions of the study are the inclusion of damping effects, as well as the propaga-
tion of cracks, which are left for future works.
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