
Course Schedule (by weeks)

? Introduction/Applications, Introduction to 
Visual C++ and Windows Programming

? Computer Graphics Hardware and Software
? Graphics Output Primitives: Scan converting 

lines, polygons, circles, curves, text; 
Introduction to OpenGL

? Display Attributes and Area Fill Algorithms
? 2-Dimensional Geometric Transformations
? 2-D Windows, Viewports, and Clipping

*** Term Examination # 1 ***

Course Schedule (by weeks)

? Interactive 2-D Graphics: Input Devices, GUI 
Techniques

? Segmentation, Hierarchical Modeling; PHIGS, 
OpenGL

? Curved lines and surfaces, parametric 
equations, Bezier and B-spline curves

? Animation, Sprites, Game Development, DirectX 
? 3-D Graphics: Modeling & Transformations
? 3-D Graphics: Viewing and Projections



Course Schedule (by weeks)

? Hidden Surface Removal

*** Term Examination # 2 ***
? Illumination, Reflection, Shading, 

Texturing, Ray Tracing, Radiosity
? Fractals, Iterated Function Systems, L-

Systems, Particle Systems, Escape-time 
algorithms, Chaos

Introduction to 
Computer Graphics



Computer Graphics
? Using a computer to generate visual images
? Definition of Computer Graphics:

– Creation, storage, manipulation, and display of 
models of scenes using a computer

? Interactive Computer Graphics:
– User dynamically controls displayed image 

attributes by means of interactive input devices

Motivation

?Human visual channel highly developed

?Efficient for communicating complex 
ideas



Related Field: Image 
Processing

? Image enhancement/understanding
? Reconstruction of objects from images
? Computer Graphics--Synthesis of images
? Image Processing--Analysis of images
? Image Processing subfields:

– image enhancement
– Image understanding
– computer vision
– pattern recognition (A.I. important)

Computer Graphics & Image 
Processing



Three Phases of Computer 
Graphics

? Modeling
– Representing objects/scenes 

mathematically
?Rendering

– Producing an image from a model
?Animation

– Making an image move

Features of Computer 
Graphics Models

?Output primitives:
– building blocks

?Data structures:
– how primitives relate to each other



Levels of Complexity of CG

? 2-D line Drawings: Primitives
? 2-D colored images: Area fill
? 3-D line drawings: 3-D to 2-D projection
? 3-D colored images: Hidden surface removal, 

color, shading
? 3-D photorealistic images: materials 

properties, lighting, reflection, transparency, 
shadows (physics), complex object models

? Animation at all levels: Movement

2-D Line Drawing



2-D Colored Image

3-D Line Drawing



3-D Line Drawing (some hidden 
surfaces removed)

3-D Colored Image (flat shaded)



3-D Colored Image (smooth shaded)

3-D Colored Image Smooth 
Shaded with Specular Highlights



3-D Photorealistic Image (ray traced 
image with texture mapping)

3-D Photorealistic Image (fractal 
mountains, L-system plants)



An Animation of a 3D Scene
?Frames generated by ray tracing

Some Applications of CG
? Data Presentation (statistics, business, 

scientific, demographics...)
? CAD, CAM, CIM
? Painting/Drawing systems
? TV Commercials
? Entertainment

– Video Games
– Motion Picture Industry

? Cartography
? Computer Art



Graphics Applications

?Computer Aided Design (CAD)

Graphics Applications

?Entertainment: Cinema

Pixar: Monster’s Inc.



Video Games

?Microsoft Xbox 360
?Sony PlayStation 3
?Nintendo Wii

– Wireless controller – Wii Remote

Video Games - Nintendo Wii



?Architectural Design
?Simulation of Reality

– Flight simulators
– Ground vehicle simulators
– Arcade games
– Virtual worlds

• Second Life

Graphics Applications

Simulation



Virtual Worlds – Second Life

Graphics Applications

? Scientific Simulation/Visualization
– Use graphics to make sense of vast amounts of 

scientific data
– Use when too dangerous/expensive or impossible to 

do real experiments
? Education and Training
? Process Control
? CASE



Graphics Applications

?Scientific Visualization

Graphics Applications
? Image Processing/Enhancement
? Medicine

– Computed Tomography (CT Scan)
– X-ray, ultrasound, NMR, PET:
– All can give 3-D images of human anatomy
– Computer-aided Surgery

? GUIs
? World Wide Web Development
? New Stuff--can't even be imagined



Graphics Applications
?Medical Visualization

MIT: Image-Guided Surgery Project

The V
isible H

um
an P

roject

Computer Graphics--

?A huge, fast-moving, exciting field that 
integrates the best of art and science

?Needs new Renaissance men & women
– Bright and analytic enough to understand 

the science & math
– Sensitive and creative enough to do the art

?Both left and right sides of the brain 
required!



Using Visual Studio .NET

?To prepare many kinds of applications
– Win32 Console Applications (DOS programs)
– Win32 API Apps in C or VC++
– MFC Apps in VC++
– DLLs
– .NET Windows Forms Apps in Managed C#, 

VB, C++, and other languages
– ASP.NET Web Apps and Services
– ADO.NET Data Base Apps
– Others including OpenGL



Solutions and Projects
? Solution

– A single application
– Can contain one or more projects

• In Managed applications, projects can be in different languages

– Overall solution information stored in a .SLN file
– Open this when you want to work on a solution

? Project
– Basic component of an application
– Collection of files:

• Source, headers, resources, settings, configuration information,
many more

An Introduction to Windows 
Programming
Using VC++

?Two approaches:
– Win32 API

• Most basic

– MFC
• Encapsulates API functions into classes
• For most apps, easiest to use



?Displaying something in a window
?Text and graphics are done one pixel at a 

time
?Any size/shape/position possible
?Design goal: Device Independence

Text and Graphics Output

Device Independent 
Graphics Interface

? Windows programs don’t access hardware 
devices directly

? Make calls to generic drawing functions 
within the Windows ‘Graphics Device 
Interface’ (GDI) -- a DLL

? The GDI translates these into HW commands

Program GDI Hardware



? Windows programs don’t draw directly on the 
hardware

? Draw on “Device Context” (DC)
– Is associated with a physical device
– Abstracts the device it represents
– Like a painter’s canvas
– Specifies drawing attributes

• e.g., text color

– Contains drawing objects
• e.g., pens, brushes, bitmaps, fonts

Device Context

The DC and the GDI



Some GDI Attributes
ATTRIBUTE            DEFAULT       FUNCTION
-----------------------------------------------------------------
Background color      white                SetBkColor()
Background mode     OPAQUE         SetBkMode() 
Current Position        (0,0)                 MoveTo()
Drawing Mode          R2COPYPEN   SetROP2()
Mapping Mode          MM_TEXT       SetMapMode() 
Text Color                 Black                SetTextColor()

Some GDI Drawing Objects

Object          Default                     What it is
----------------------------------------------------------------------
Bitmap            none                              image object
Brush             WHITE_BRUSH             area fill object
Font                SYSTEM_FONT           text font object
Pen                 BLACK_PEN                 line-drawing object
Color Palette  DEFAULT_PALETTE    color combinations
----------------------------------------------------------------------

?Can be created with GDI functions
?Must be “selected” into a DC to be used



Colors in Windows
?Uses 4-byte numbers to represent colors
?Simplest method--direct color:

– typedef DWORD  COLORREF;
--------------------------------------------------------------
| 0 | Blue (0-255) | Green (0-255) | Red (0-255) |
--------------------------------------------------------------
– MSB=0:

• ==> RGB direct color used (default)
• Other bytes specify R, G, B intensities



RGB() Macro
?Specify Red, Green, Blue intensities
?RGB() generates a COLORREF value
?Can be used in color-setting ftns), e.g.

COLORREF  cr;
cr = RGB (0,0,255);   /* blue */

?Example usage in a program
SetTextColor(RGB(255,0,0)); //red text
SetBkColor(RGB(0,0,255)); //blue bkgnd

A Typical Sequence 
With Drawing Objects:

HPEN    hOldP, hNewP;
HDC     hDC;
hDC = GetDC(hWnd); 
hNewP = CreatePen(PS_SOLID, 3, RGB(0,0,255));
hOldP = (HPEN)SelectObject(hDC, hNewP);
// NOW DO SOME DRAWING WITH THE NEW PEN
SelectObject(hDC,hOldP); //displace pen from DC
DeleteObject(hNewP); //now can be deleted
ReleaseDC(hWnd,hDC);



Some GDI Drawing Primitives

? Arc(hDC,x1,y1,x2,y2,xStart,yStart,xEnd,yEnd);
? Ellipse (hDC,x1,y1,x2,y2);
? MovetoEx (hDC,x1,y1,p.Point);
? LineTo (hDC,x1,y1);
? Polygon (hDC,points_array,nCount);
? Polyline (hDC,points_array,nCount);
? Rectangle (hDC,x1,y1,x2,y2);
? SetPixel (hDC,x1,y1,colorref);
? Many more (see on-line help)

An Example Win32 API 
Program

? Has Menu items to:
– Draw a circle
– Quit

? Types an “L” at cursor position when user left clicks the 
mouse

? Has an icon
? On CS-460 Sample Programs web page 

http://www.cs.binghamton.edu/~reckert/460/api.html



Windows Programming 
with MFC

MFC Programming

?MFC: The Microsoft Foundation Class 
Library

?Additional Notes:
http://www.cs.binghamton.edu/~reckert/360/class14.htm
http://www.cs.binghamton.edu/~reckert/360/class15.htm
http://www.cs.binghamton.edu/~reckert/360/10.html



MFC

?The Microsoft Foundation Class (MFC) 
Library--
– A Hierarchy of C++ classes designed to 

facilitate Windows programming
– An alternative to using Win32 API functions
– A Visual C++ Windows app can use either 

Win32 API, MFC, or both



Some Characteristics of MFC
? Offers convenience of REUSABLE CODE

– Many tasks in Windows apps are provided by MFC
– Programs can inherit and modify this functionality as 

needed
– MFC handles many clerical details in Windows pgms
– Functionality encapsulated in MFC Classes

? Produce smaller executables
? Can lead to faster program development
? MFC Programs must be written in C++ and   

require the use of classes
– Programmer must have good grasp of OO concepts

Help on MFC Classes
? See Online Help (Index) on:

“MFC”
“Hierarchy”

“Hierarchy Chart”
“MFC Reference”

? On the Web:
http://msdn.microsoft.com/en-us/library/d06h2x6e(VS.80).aspx



Base MFC Class
? CObject: At top of hierarchy ("Mother” of almost 

all MFC classes)
? Provides features like:

– Serialization
– Runtime class information
– Diagnostic & Debugging support
– Some important macros

? All its functionality is inherited by any classes 
derived from it

Some Important Derived Classes

?CFile
?CDC 
?CGdiObject
?CMenu



?CCmdTarget: Encapsulates message passing 
process and is parent of:
– CWnd

• Base class from which all windows are derived
• Encapsulates many important windows functions and 

data members
• Examples: 

– m_hWnd stores the window’s handle
– Create(…) creates a window 

– Most common subclasses:
• CFrameWindow
• CView
• CDialog

?CCmdTarget also parent of:
– CWinThread: Defines a thread of execution and 

is the parent of:
• CWinApp

– Encapsulates an MFC application
– Controls following aspects of Windows programs:

– Startup, initialization, execution, the message 
loop, shutdown

– An application should have one CWinApp 
object

– When instantiated, application begins to run
– CDocument



Primary task in writing an MFC 
program

?To create/modify classes
– Most will be derived from MFC library 

classes

?Call class functions to perform tasks

MFC Class Member Functions
?Most functions called by an application will 

be members of an MFC class
?Examples:

– ShowWindow()--a member of CWnd class
– TextOut()--a member of CDC
– LoadBitmap()--a member of CBitmap

?Applications can also call API functions 
directly
– Use “global scope resolution” operator    ::

• Example     ::UpdateWindow(hWnd);



MFC Global Functions

?Not members of any MFC class
? Independent of or span MFC class 

hierarchy
?Example:

– AfxMessageBox()

Message Processing under MFC
? API mechanism: switch/case statement in app’s WndProc
? Under MFC, WndProc is buried in MFC framework
? Message handling mechanism: “Message Maps " 

– lookup tables the MFC WndProc searches

? A Message Map contains:
– A Message number 
– A Pointer to a message-processing function

• These are members of CWnd
• You override the ones you want your app to respond to

• Like virtual functions
– “Message-mapping macros” set these up



MFC Windows Programming 
(App/Window Approach)

? Simplest MFC programs must contain two classes 
derived from the hierarchy:
– 1. An application class derived from CWinApp

• Defines the application
• provides the message loop

– 2. A window class usually derived from    
CWnd or CFrameWnd

• Defines the application's main window
? To use these & other MFC classes you must have: 

#include <Afxwin.h> in the .cpp file



MFC Windows Programming 
(Document/View Approach)
?Frequently need to have different views 

of same data
?Doc/View approach achieves this 

separation:
– Encapsulates data in a CDocument class 

object
– Encapsulates data display mechanism & 

user interaction in a CView class object

Relationship between Documents, 
Views, and Windows



Document/View Programs
? Almost always have at least four classes derived 

from:
– CFrameWnd
– CDocument
– CView
– CWinApp

? Usually put into separate declaration (.h) and 
implementation (.cpp) files

?Lots of initialization code
? Could be done by hand, but nobody does it that 

way

Microsoft Developer Studio 
AppWizard and ClassWizard  

Tools



AppWizard
? Tool that generates a Doc/View MFC program 

framework automatically
? Can be built on and customized by programmer
? Fast, efficient way of producing Windows Apps
? Creates functional CFrameWnd, CView,

CDocument, CWinApp classes
? After AppWizard does it's thing:

– Application can be built and run
– Full-fledged window with all common menu items, 

tools, etc.

Other Visual Studio Wizards
? Dialog boxes that assist in generating code

– Generate skeleton message handler functions
• Set up the message map

– Connect resources & user-generated events to 
program response code

– Insert code into appropriate places in program
• Code then can then be customized by hand

– Create new classes or derive classes from MFC base 
classes

– Add new member variables/functions to classes
? In .NET many wizards available through 

‘Properties window’



SKETCH Application
?Example of Using AppWizard and 

ClassWizard
?User can use mouse as a drawing pencil

Left mouse button down:
– lines in window follow mouse motion

?Left mouse button up:
– sketching stops

?User clicks "Clear" menu item
– window client area is erased

? Sketch data (points) won't be saved
– So leave document (CSketchDoc) class 

created by AppWizard alone
? Base functionality of application  (CSketchApp)

and frame window (CMainFrame) classes are 
adequate
– Leave them alone

? Use ClassWizard to add sketching to 
CSketchView class



Sketching Requirements

?Each time mouse moves:
– If left mouse button is down:

• Get a DC
• Create a pen of drawing color
• Select pen into DC
• Move to old point
• Draw a line to the new point
• Make current point the old point
• Select pen out of DC

Variables

?BOOLEAN m_butdn
?CPoint m_pt, m_ptold
?COLORREF m_color
?CDC* pDC



Steps in Preparing SKETCH
1. “File” / “New” / “Project”

– Project Type: “Visual C++ Projects”
– Template: “MFC Application”
– Enter name: Sketch

2. In “Welcome to MFC Application Wizard”
– Application type: “Single Document” Application
– Take defaults for all other screens

3. Build Application --> Full-fledged SDI App with 
empty window and no functionality

4. Add member variables to CSketchView
– Can do manually in .h file
– Easier to:

• Select Class View pane
• Click on SketchView class

– Note member functions & variables
• Right click on CSketchView class

– Choose “Add / Variable”
– Launches “Add Member Variable Wizard”

– Variable Type: enter CPoint
– Name: m_pt
– Access: Public (default)

– Note after “Finish” that it’s been added to the .h file
• Repeat for other variables (or add directly in .h file):

– CPoint   m_ptold
– bool   m_butdn
– COLORREF   m_color
– CDC*   pDC



5. Add message handler functions:
– Select CSketchView in Class View
– Select “Messages” icon in Properties window

• Results in a list of WM_ messages

– Scroll to WM_LBUTTONDOWN & select it
– Add the handler by clicking on down arrow and 

“<Add> OnLButtonDown”
• Note that the function is added in the edit window and the 

cursor is positioned over it:
– After “TODO…” enter following code:

m_butdn = TRUE;
m_ptold = point;



?Repeat process for WM_LBUTTONUP 
handler:
– Scroll to WM_LBUTTONUP
– Click: “<Add> OnLButtonUp”, 
– Edit Code by adding:

m_butdn = FALSE;



? Repeat for WM_MOUSEMOVE
– Scroll to WM_MOUSEMOVE
– Click: “<Add> OnMouseMove”
– Edit by adding code:

if (m_butdn)
{

pDC = GetDC();
m_pt = point;
CPen newPen (PS_SOLID, 1, m_color);
CPen* pPenOld = pDC->SelectObject (&newPen);
pDC->MoveTo (m_ptold);
pDC->LineTo (m_pt);
m_ptold = m_pt;
pDC->SelectObject (pPenOld);

}

6. Initialize variables in CSketchView 
constructor
– Double click on CSketchView constructor

• CSketchView(void) in Class View

– After “TODO…”, Add code:
m_butdn = FALSE;
m_pt = m_ptold = CPoint(0,0);
m_color = RGB(0,0,0);



7. Changing Window’s Properties
– Use window’s SetWindowXxxxx() functions

• In CWinApp-derived class in its InitInstance(…) 
function before window is shown and updated

– Example: Changing the default window title
m_pMainWnd->SetWindowTextW(

TEXT(“Sketching Application”));

– There are many other SetWindowXxxxx() 
functions that can be used to change other 
properties of the window

8. Build and run the application

Menus and Command Messages

? User clicks on menu item
? WM_COMMAND message is sent
? ID_XXX identifies which menu item (its ID)
? No predefined handlers

– We write the OnXxx() handler function
– Must be declared in .h file and defined in .cpp file

? Event handler wizard facilitates this



Adding Color and Clear Menu 
Items to SKETCH App

? Resource View (sketch.rc folder)
– Double click Menu folder
– Double click IDR_MAINFRAME menu
– Add: “Drawing Color” popup menu item with items:

• “Red”,  ID_DRAWING_COLOR_RED (default ID)
• “Blue”,  ID_DRAWINGCOLOR_BLUE

• “Green”,  ID_DRAWINGCOLOR_GREEN
• “Black”,  ID_DRAWINGCOLOR_BLACK

– Add another main menu item:
• “Clear Screen”,  ID_CLEARSCREEN

– Set Popup property to False 

Add Menu Item Command 
Handler Function

– One way: Use “Event Handler Wizard”
– In “Resource View” bring up menu editor
– Right click on “Red” menu item
– Select “Add Event Handler” ? “Event Handler Wizard”

dialog box
• Class list: CSketchView
• Message type: COMMAND
• Function handler name: accept default

– OnDrawingcolorRed
• Click on “Add and edit”
• After “TODO…” in editor enter following code:

m_color = RGB(255,0,0);



– In Class View Select CSketchView
– In Properties window select Events (lightning 

bolt icon)
– Scroll down to: ID_DRAWINGCOLOR_RED
– Select “COMMAND”
– Click “<Add> OnDrawingcolorRed” handler
– Edit code by adding:

m_color = RGB(255,0,0);

Another Method of Adding a 
Menu Item Command Handler



Repeat for ID_DRAWINGCOLOR_BLUE 
Code: m_color = RGB(0,0,255);

Repeat for ID_DRAWINGCOLOR_GREEN 
Code: m_color = RGB(0,255,0);

Repeat for ID_DRAWINGCOLOR_BLACK 
Code: m_color = RGB(0,0,0);

Repeat for ID_CLEAR 
Code: Invalidate();



Destroying the Window

? Just need to call DestroyWindow()
– Do this in the CMainFrame class – usually 

in response to a “Quit” menu item

Build and Run the Application


	lect1_1-26-10-Intro
	lect2_2010-MFC

