
Circles not centered on origin

Need to redo the Set8Pixel() function

New Set8Pixel() Function
Set8Pixel(x,y,h,k)
{ SetPixel(x+h,y+k);

SetPixel(x+h,-y+k);
SetPixel(-x+h,y+k);
SetPixel(-x+h,-y+k);
SetPixel(y+h,x+k);
SetPixel(y+h,-x+k);
SetPixel(-y+h,x+k);
SetPixel(-y+h,-x+k);

}

Adjusting for Aspect Ratio

?One way--adjust at pixel level
? If pixel width = w, height = h
?A.R. = h/w
?So either:

– Multiply each x by A.R.
– or Divide each y by A.R.

Scan Converting an Ellipse

Midpoint Ellipse Alg. (Region I)
DPx=2*ry*ry; DPy=2*rx*rx; x=0; y=ry; Px=0;
Py=2*rx*rx*ry; f=ry*ry+rx*rx(0.25-ry); ry2=ry*ry;
Set4Pixel(x,y);
while (px<py) //Region I

{
x=x+1; Px=Px+DPx;
if (f>0) // Bottom case

{y=y-1; Py=Py-Dpy; f=f+ry2+Px-Py;}
else // Top case

f=f+ry2+Px;
Set4Pixel(x,y);
}

Scan Converting other 2D
Curves

DDA:
y = f(x); If we can differentiate it:
dy/dx = f’(x)
Step in x for parts of curve where dy/dx < 1

x = x + 1
y = y + f’(x)

Step in y for parts of curve where dy/dx > 1
y = y + 1
x = x + 1/f’(x)

Plotting Implicit Functions
?Explicit function: y = f(x)

– Can always plot using DDA or Midpoint
Algorithms

? Implicit function: g(x,y) = 0, e.g.:
– Ovals of Casini
– g(x,y) = (x^2+y^2+a^2)^2 - 4a^2x^2 – b^4

?Often can’t be converted to explicit form
?No solution y = f(x)
?How do we plot such functions?

3D Surfaces
?A related more general implicit function
? z = f(x,y)

– z could represent the height of point (x,y)

?Contour curves
– Want to plot points that have the same height
– f(x,y) = h, a constant
– Gives curves like on a topographic map
– Need to compute points (x,y) that satisfy

f(x,y) = h

Marching Squares
?Approximation technique for solving

contour curve problem
?Suppose we sample f(x,y) at evenly-

spaced points on a rectangular array
fij = f(xi,yj), xi = x0+i*dx, i = 0,1,…,N-1

yj = y0+j*dy, j = 0,1,…,M-1
– Want to find an approximation to curve

z=f(x,y) for a particular value of z = h
• For a given h there may 0, 1, or many contour

curves

Constructing Piecewise Linear Curve

?Start with rectangular cell
?Algorithm will find line segments for

each cell using corner z values to
determine if contour passes through cell

? In general, sampled values are not
equal to contour values

? But curve could still go through the
cell

? One possible case:
? f(i,j) > h
? f(i+1,j) < h
? f(i+1,j+1) < h
? f(i,j+1) < h

? If f(x,y)-h > 0 at one vertex
? And f(x,y) -h < 0 at adjacent vertex,

– It must be 0 somewhere in between ?
contour passes through that segment

Line Segments between intersection pts
? Estimate where contour intersects two edges

and join points with line segment
– Simplest approximation to curve

? Use interpolation to get intersection pts.
f(xi,yj) = a, a < h; f(xi+1,yj) = b, b > h
(x-xi)/dx = (a-h)/(a-b) ? x = xi +dx*(a-h)/(a-b)

Other Types of Cells
? There are 16 possible combinations of cell

vertex labelings

Only 4 Unique Vertex Labelings
?Rotational symmetry (e.g. 1 & 2)
?Exchange (black & white) symmetry

(e.g. 0 & 15)
?So there are only 4 unique cases:

How to draw Line Segments
for each Case

?1st case: trivial (contour doesn’t intersect
cell) ? no line segments drawn

?2nd case: adjacent edges, as above,
generates one line segment between
adjacent edges

?3rd case: also draw one line segment
that goes between opposite edges

?4th case: has an ambiguity

4th Case Ambiguity

?Which one to use? Break or join contour?
– Pick one at random
– Subdivide into smaller cells & repeat
– Or ignore since no solution w/o more data

Subdivision

?But we can ignore them if we want to
keep the edges closed

Marching Squares Algorithm

?Form cell array data[][] from implicit
function
– For each cell i,j

• Compute data[i][j] from f(x,y)

?Process cells to generate line segments
– “March” through the cells

• For each cell
– Call code for single-cell processing: cell(…)
– Compute & draw appropriate lines for that cell

– Call helper functions for each of 4 cases

Code for Single Cell (i, j)
vertices a, b, c, d

int cell(double a, double b, double c, double d)
{
int n=0;
if(a>h) n+=1; if (b>h) n+=8; if(c>h) n+=4; if(d>h) n+=2;
switch(n) {

// cases 1, 2, 4, 7, 8, 11, 13, 14: // contour cuts 1 corner
draw_one(n, i, j, a, b, c, d); break

// cases 3, 6, 9, 12: // contour crosses cell
draw_opposite(n, i, j, a, b, c, d); break;

// cases 0, 15: break; // nothing to draw
}

draw_one ftn: adjacent edges
void draw_one(n, i, j, a, b, c, d) {
Switch(n)
{
case 1: case 14:

x1=ox; y1=oy+dy*(h-a)/(d-a);
x2=ox+dx*(h-a)/(b-a); y2=oy;
break;

// other cases here
}
glBegin(GL_LINES);

glVertex2d(x1,y1); glVertex(x2,y2);
glEnd(); }

Other “draw” function

?Draw_opposite(n,i,j,a,b,c,d)
– For opposite-edge case

Extension to 3D
?Marching Squares is easily extended to

handle 3D volumetric data
– Represent “iso-surfaces” instead of contours

• f(x,y,z) = constant
• Display as 3D contour plots

– Use 3D grid cells instead of 2D cells
– “Marching Cubes” algorithm

• Check data values at 8 corners of a cell
• Interpolate to find best polygon surface element

passing through a cell
• Result: polygon mesh approximation to the surface

Text and Characters

?Very important output primitive
?Many pictures require text
?Two general techniques used

– Bitmapped (raster)
– Stroked (outline)

Bitmapped Characters
?Each character represented (stored) as a

2-D array
– Each element corresponds to a pixel in a

rectangular “character cell”
– Simplest: each element is a bit (1=pixel on,

0=pixel off)
00111000
01101100
11000110
11000110
11111110
11000110
11000110
00000000

Stroked Characters
?Each character represented (stored) as

a series of line segments
– sometimes as more complex primitives

?Parameters needed to draw each stroke
– endpoint coordinates for line segments

Characteristics of Bitmapped
Characters

?Each character in set requires same
amount of memory to store

?Characters can only be scaled by integer
scaling factors

? --> "Blocky" appearance
?Difficult to rotate characters by arbitrary

angles
?Fast (BitBLT)

Characteristics of Stroked
Characters

?Number of stokes (storage space) depends
on complexity of character

?Each stroke must be scan converted ==>
more time to display

?Easily scaled and rotated arbitrarily
– just transform each stroke

Example Character-Display
Algorithms

?See CS-460/560 Notes Web Pages:
?Links to:

– An illustration of how to display bitmapped
characters

– An illustration of how to display stroked
characters

Algorithm for Bitmapped
Characters--an Example

? 1. Define bitmap for the letter--e.g. ‘T’
int t[7][7] = { {0,0,0,0,0,0,0}, {0,1,1,1,1,1,0},

{0,0,0,1,0,0,0}, {0,0,0,1,0,0,0}, {0,0,0,1,0,0,0},
{0,0,0,1,0,0,0}, {0,0,0,0,0,0,0}}; // bitmap for ‘T’

– [Could have a file with the bitmap
descriptions of each character in the
character set to be displayed]

– Not the most efficient way of doing it
• Could have used individual bits
• Algorithm would be more complex

Bitmapped Character
Algorithm, Continued

?2. Define a function to display bitmap
letter[][] at pixel coordinates (x,y)
disp_letter (int x, int y, int letter[7][7])
{ int i,j;
for (i=0; i<7; i++)

for (j=0; j<7; j++)
if (letter[i][j] == 1)

Setpixel(x+j,y+i); // plot from bitmap }

?3. Call the function, passing desired bitmap
disp_letter (50,100,t); // draw a 'T' at (50,100)

Algorithm for Stroked
Characters

? 1. Define a character (CH) type:
typedef struct tagCH
{

int n;
POINT * pts;

} CH;

? pts is an array of stroke endpoint vertices
? n is the number of vertices

Stroked Character Algorithm,
Continued

?2. Define generic display-character function
– Strokes are specified in variable c (type CH)
– Display at pixel coordinates (xx,yy):

disp_char (int xx, int yy, CH c)
{ int i, n_strokes;

n_strokes=c.n/2; // n points ==> n/2 strokes
for (i=0; i<n_strokes; i++)

line(xx+c.pts[2*i].x, yy+c.pts[2*i].y,
xx+c.pts[2*i+1].x, yy+c.pts[2*i+1].y);

}

Stroked Character Algorithm,
Continued

?3. Define the character's CH structure
? The following could be for an 'F':

POINT p[6]; CH f;
p[0].x=0; p[0].y=0; p[1].x=0; p[1].y=10;
p[2].x=0; p[2].y=0; p[3].x=10; p[3].y=0;
p[4].x=0; p[4].y=5; p[5].x=6; p[5].y=5;
f.n = 6; f.pts = p;

? [Descriptions of each character in the
character set could be stored in a file]

Stroked Character Algorithm,
Continued

?4. Call the character-display function,
passing it the desired character (CH)

disp_char (50,100,f); // draw ‘F’ at (50,100)

OpenGL Character Functions

?Only low-level support in basic OpenGL
library
– Explicitly define characters as bitmaps
– Display by mapping selected sequence of

bitmaps to adjacent positions in frame
buffer (BitBLTing)

OpenGL GLUT Text Support

Some predefined character sets in GLUT:
1. GLUT Bitmapped:

• Display with glutBitmapCharacter(font, ch);
– font: constant type face to be used

– GLUT_BITMAP_8_BY_13 (fixed-width)
– GLUT_BITMAP_TIMES_ROMAN_10 (variable width)
– Others are available

– ch: ASCII code of character
• Position with glRasterPosition2i(x,y);
• Example:

glRasterPosition2i(20,10);
glutBitmapCharacter(GLUT_BITMAP_8_15, ‘A’);

• x coordinate is incremented by width of character after display

2. GLUT Stroked Characters:
– glutStrokeCharacter(font, ch);
– Font:

• GLUT_STROKE_ROMAN (proportional spacing)
• GLUT_STROKE_MONO_ROMAN (constant spacing)

– Ch: ASCII code of character
– Size & position determined by specifying

transformation operations
– We’ll see these later

Character Fonts in Windows

?FONT--Typeface, style, size of
characters in a character set

?Three kinds of Windows Fonts
– Stock Fonts
– Logical or GDI Fonts
– Device Fonts

Windows Stock Fonts

? Built into Windows
? Always available

Windows Logical or GDI Fonts

? Defined in separate font resource files on disk
– .fon file

• (Stroke or Raster)
– .fot/.ttf file

• (TrueType)

? Specific instance must be “created”

Windows Stroke Fonts
?Consist of line/curve segments
?Continuously scalable
?Slow to draw
?Legibility not too good

Windows Raster Fonts
?Bitmaps so:

– Scaling by non-integer factors difficult
– Fast to display
– Legibility very good

Windows TrueType Fonts

?Rasterized stroke fonts so:
– Stored as strokes with hints to convert to

bitmap
– Conversion called rasterization
– Continuously scalable
– Fast to display
– Legibility very good
– Combine best of both stroke and raster

fonts

Windows TrueType Fonts

Device Fonts

?Native to output device
?e.g., built-in printer fonts

– Postscript

Using Windows Stock Fonts

?Like stock pens, brushes
?Accessed with:

GetStockObject(font_name);
• Returns a handle to a font
• Use by selecting into DC with

SelectObject():
Or --

CDC::SelectStockObject(font_name);

Using Windows Logical Fonts

?Instantiate a CFont object
?Use CFont::CreateFont(14 params!!)

• Specify characteristics
• Interpolates data from font file
• --> new sizes, bold, rotated, etc.

?Select CFont object into the DC
?Called logical since determined by program

logic not just file contents
?See online help

Windows Text Metrics

?CreateFont() may not give you exactly
what you ask for

?Can use CDC::GetTextMetrics() to find out
font details
– Gives lots of information in a TEXTMETRIC

structure
– Commonly used to determine font size

• can be used to set line spacing, caret size, sizes of
buttons, etc.

Windows Text Metrics

