
Area Fill

? Important for any closed output primitive
– Polygons, Circles, Ellipses, etc.

?Attributes:
– fill color
– fill pattern

?2 Types of area fill algorithms:
– Boundary/Flood Fill Algorithms
– Scanline Algorithms

Area Fill Algorithms

?See CS-460/560 Notes Web Page
?Link to:

– Week 5-BC: Area Fill Algorithms

?URL:
– http://www.cs.binghamton.edu/~reckert/460

/fillalgs.htm

Boundary/Flood Fill Algorithms
? Determine which points are inside from pixel

color information
– e.g., interior color, boundary color, fill color, current

pixel color
– Color the ones that are inside.

Scanline Algorithms

? Examine horizontal scanlines spanning area
? Find intersection points between current

scanline and borders
? Color pixels along the scanline between

alternate pairs of intersection points
? Especially useful for filling polygons

– polygon intersection point calculations are very
simple and fast

– Use vertical and horizontal coherence to get new
intersection points from old

Boundary/Flood Fill Algorithms
? Determine which points are inside from pixel

color information
– e.g., interior color, boundary color, fill color, current

pixel color
– Color the ones that are inside.

Connected Area Boundary Fill
Algorithm

?For arbitrary closed areas
? Input:

– Boundary Color (BC), Fill Color (FC)
– (x,y) coordinates of seed point known to be

inside

?Define a recursive BndFill(x,y,BC,FC)
function:
If pixel(x,y) not set to BC or FC, then set to FC
Call BndFill() recursively for neighboring points

?To be able to implement this, need an
inquire function

?e.g., Windows GetPixel(x,y)
– returns color of pixel at (x,y)

The BndFill() Function
BndFill(x,y,BC,FC)
{

color = GetPixel(x,y)
if ((color != BC) && (color != FC))
{

SetPixel(x,y,FC);
BndFill(x+1,y,BC,FC); BndFill(x,y+1,BC,FC);
BndFill(x-1,y,BC,FC); BndFill(x,y-1,BC,FC);

}
}

? This would be called by code like:
BndFill(50,100,5,8); // 5,8 are colors
– Windows GDI: colors are COLORREFs
– RGB() macro could be used

? As given, only works with 4 -connected regions
? Boundary must be of a single color

– Could have multiple interior colors

Flood Fill Algorithm

?A variation Boundary Fill
?Fill area identified by the interior color

– Instead of boundary color
– Must have a single interior color

?Good for single colored area with
multicolor border

Ups & Downs of
Boundary / Flood Fill

?Big Up: Can be used for arbitrary areas!
?BUT-- Deep Recursion so:

– Uses enormous amounts of stack space
• (Adjust stack size before building in Windows!)

?Also very slow since:
– Extensive pushing/popping of stack
– Pixels may be visited more than once
– GetPixel() & SetPixel() called for each pixel

• 2 accesses to frame buffer for each pixel plotted

Adjusting Stack Size in VC++

? ‘Project’ on Main Menu
– Properties

• Configuration Properties
– Linker

System
Stack Reserve Size:

perhaps 10000000
Stack Commit Size:

perhaps 8000000

Scanline Polygon Fill
Algorithm

?Look at individual scan lines
?Compute intersection points with polygon

edges
?Fill between alternate pairs of intersection

points

More specifically:

?For each scanline spanning the polygon:
– Find intersection points with all edges the

current scanline cuts
– Sort intersection points by increasing x
– Turn on all pixels between alternate pairs of

intersection points

?But--
– There may be a problem with intersection

points that are polygon vertices

Vertex intersection points that are not local
max or min must be preprocessed!

Preprocessing non-max/min
intersection points

?Move lower endpoint of upper edge up by
one pixel

? i.e., y <-- y + 1
?What about x?

m = ? y/? x, so ? x = (1/m) * ? y
But ? y = 1, so:
x <-- x + 1/m

Preprocessing

Active Edge

?A polygon edge intersected by the current
scanline

?As polygon is scanned, edges will become
active and inactive.

?Criterion for activating an edge:
ysl = ymin of the edge

(Here ysl = y of current scanline)

?Criterion for deactivating an edge:
? ysl = ymax of the edge

Vertical & Horizontal
Coherence

?Moving from one scanline to next:
? y = y + 1
? If edge remains active, new intersection

point coordinates will be:
ynew = yold + 1
xnew = xold + 1/m

(1/m = inverse slope of edge)

Scanline Polygon Fill
Algorithm Input

?List of polygon vertices (xi,yi)

Scanline Polygon Fill Algorithm
Data Structures

1. Edge table:
– For each edge: edge #, ymin, ymax, x, 1/m

2. Activation Table:
– (y, edge number activated at y)

• Provides edge(s) activated for each new scanline
• Constructed by doing a "bin" or "bucket" sort

3. Active Edge List (AEL):
– Active edge numbers sorted on x

• A dynamic data structure

Bin Sort for Activation Table

0
0

1
2
2

3
4

1. Set up edge table from vertex list; determine range of
scanlines spanning polygon (miny, maxy)

2. Preprocess edges with nonlocal max/min endpoints
3. Set up activation table (bin sort)
4. For each scanline spanned by polygon:

– Add new active edges to AEL using activation table
– Sort active edge list on x
– Fill between alternate pairs of points (x,y) in order of

sorted active edges
– For each edge e in active edge list:

If (y != ymax[e]) Compute & store new x (x+=1/m)
Else Delete edge e from the active edge list

Scanline Polygon Fill Algorithm

Scanline Polygon Fill Algorithm Example

Scanline Poly Fill Alg. (with example Data)

Adapting Scanline Polygon Fill
to other primitives

� Example: a circle or an ellipse
– Use midpoint algorithm to obtain intersection

points with the next scanline
– Draw horizontal lines between intersection

points
– Only need to traverse part of the circle or

ellipse

Scanline Circle Fill Algorithm

The Scanline Boundary Fill
Algorithm for Convex Polygons

Select a Seed Point (x,y)
Push (x,y) onto Stack
While Stack is not empty:

Pop Stack (retrieve x,y)
Fill current run y:

-- iterate on x until borders are hit
-- i.e., until pixel color == boundary color

Push left-most unfilled, nonborder pixel above
-->new "above" seed

Push left-most unfilled, nonborder pixel below
-->new "below" seed

Demo of Scanline Polygon Fill
Algorithm vs. Boundary Fill

Algorithm

� Polyfill Program
– Does:

• Boundary Fill
• Scanline Polygon Fill
• Scanline Circle with a Pattern
• Scanline Boundary Fill (Dino Demo)

Dino Demo of Scanline
Boundary Fill Algorithm

Pattern Filling

� Represent fill pattern with a Pattern
Matrix

� Replicate it across the area until
covered by non-overlapping copies of
the matrix
– Called Tiling

Pattern Filling--Pattern Matrix

Using the Pattern Matrix

� Modify fill algorithm
� As (x,y) pixel in area is examined:

if(pat_mat[x%W][y%H] == 1)
SetPixel(x,y);

A More Efficient Way
Store pat_matrix as a 1-D array of bytes or words, e.g., WxH

y%H --> byte or word in pat_matrix
Shift a mask by x%W

e.g. 10000000 for 8x8 pat_matrix
--> position of bit in byte/word of pat_matrix

“AND” byte/word with shifted mask
if result != 0, Set the pixel

Color Patterns

� Pattern Matrix contains color values
� So read color value of pixel directly

from the Pattern Matrix:

SetPixel(x, y, pat_mat[x%W][y%H])

Moving the Filled Polygon
� As done above, pattern doesn’t move

with polygon
� Need to “anchor” pattern to polygon
� Fix a polygon vertex as “pattern

reference point”, e.g., (x0,y0)
If (pat_matrix[(x-x0)%W][(y-y0)%H]==1)

SetPixel(x,y)

� Now pattern moves with polygon

Pattern Filling--Pattern Matrix

	lec6-Attributes
	areafill

