CprE 488 – Embedded Systems Design

Lecture 1 – Introduction

Phillip Jones
Electrical and Computer Engineering
Iowa State University

www.ece.iastate.edu/~phjones rcl.ece.iastate.edu

What is an Embedded System? (CPRE 288 reminder)

Your Definition?

 What are some properties of an Embedded System?

Quadcopter

Micro SD Card?

Blu-Ray / Remote

Programmable Thermostat

Roomba

What is an Embedded System? (CPRE 288 reminder)

Your Definition?

What are some properties of an Embedded System? Quadcopter

Micro SD Card?

Blu-Ray / Remote

Programmable Thermostat

Roomba

What is an Embedded System?

- The textbook definitions all have their limits
- An embedded system is simultaneously:
 - 1. "a digital system that provides service as part of a larger system" *G. De Micheli*
 - 2. "any device that includes a programmable computer but is not itself a general-purpose computer" *M. Wolf*
 - 3. "a less visible computer" E. Lee
 - 4. "a single-functioned, tightly constrained, reactive computing system" *F. Vahid*
 - 5. "a computer system with a dedicated function within a larger mechanical or electrical system, often with real-time computing constraints" *Wikipedia*

Perspective Matters!

 These definitions quickly become blurred when changing perspective:

Part of a larger system:

Not general-purpose:

Less visible:

Tightly constrained:

Dedicated function:

Another Practical Definition

An embedded system is a computing system that uses an ARM

processor

- Multiple caveats:
 - There is a significant 8-bit embedded market as well (e.g. PIC, Atmel, 8051)
 - ARM is also attempting to grow into the desktop and server market

A Different Paradigm

- Cyber-Physical System (CPS): an integration of computation with physical processes
 - Embedded computers monitor and control the physical processes
 - Feedback loops physical processes affect computation, and vice versa
- Examples tend to include networks of interacting components (as opposed to standalone embedded devices)

Still a matter of perspective as networks can span continents or be

enclosed in a single chip

Scale of Embedded Devices

 Even as Electrical and Computer Engineers it can be easy to understate the scale (both in terms of size and ubiquity) of embedded devices

- SanDisk microSD card
- 100 MHz ARM CPU

But for what reason?

- Apple Lightning Digital AV Adapter
- 256 MB DDR2, ARM SoC

This Course's Focus

- Embedded system design the methodologies, tools, and platforms needed to model, implement, and analyze modern embedded systems:
 - Modeling specifying what the system is supposed to do
 - Implementation the structured creation of hardware and software components
 - Analysis understanding why the implementation matches (or fails to match) the model
 - Design is not just hacking things together (which is admittedly also fun)
- What makes embedded system design uniquely challenging?
 - System reliability needs:
 - Can't crash, may not be able to reboot
 - Can't necessarily receive firmware / software updates
 - System performance and power constraints:
 - Real-time issues in many applications
 - (Potentially) limited memory and processing power
 - System cost:
 - Fast time to market on new products
 - Typically very cost competitive

CprE 488 Survival Skills

Necessary Skill	Gained From
Software Development (General)	MAN 1 50 CK ATTHIS GAME
Pointers	MAN, I SUCK AT THIS GAME. CAN YOU GIVE ME A FEW POINTERS?
Memory and Peripheral Interfacing	/ 0x3A282I3A
CPU Architecture	0×6339392C, 0×7363682E.
HDL Design	I HATE YOU.
Circuits and Signals	\ \ \ \
Critical Thinking	
Planning and Hard Work	

- Any course that claims to teach you how to design embedded systems is somewhat misleading you, as the technology will continue to undergo rapid change
- Our goal: provide a fundamental understanding of existing design methodology coupled with some significant experience on a current state-of-the-art platform

CprE 488 – Meet the Staff

Prof. Phillip Jones
phjones@iastate.edu

Office Hours: TBA (329 Durham)

Instructor

Robert Wernsman

James Talbert

<u>cpre488-tas@iastate.edu</u> Office Hours: TBA (Lab)

Teaching Assistants

CprE 488 – Resources

 Main text: M. Wolf. Computers as Components (4th edition): Principles of Embedded Computing System Design, Morgan Kaufmann, 2017.

- · We are here to help, but communication is key!
- Key online resources:
 - Class webpage: <u>class.ece.iastate.edu/cpre488</u> contains lecture notes, assignments, documentation, general schedule information (Note: HW0 is due this Friday!!)
 - Canvas space: https://canvas.iastate.edu is heavily used for announcements, discussion, online submission, grading
 - Class wiki: wikis.ece.iastate.edu/cpre488 updated (by you!) to include general tips and tricks and project photos/videos

Weekly Layout (Office hours to add)

	Monday	Tuesday	Wednesday	Thursday	Friday
9 am					
10 ⁰⁰			Lab A (2041 Coover)		Lab C (2041 Coover)
11 ⁰⁰					
12 ^{pm}			1		
1 ⁰⁰		Lecture (1126 Sweeney)		Lecture (1126 Sweeney)	
2 ⁰⁰					
3 00			•		•
4 00					
				Lab B (2041 Coover)	
7 ⁰⁰					

FPGA Design Tools

- Necessary steps (scripts will be provided to help automate):
 - 1. Login to any of the departmental Linux machines:
 - Remote access to machines on the list here: http://it.engineering.iastate.edu/remote/
 - Use Cygwin/X (ssh), NX client (preferred if the machine supports it)
 - Some extra machines connected to FPGA boards if you really need them
 - 2. From the bash shell, enter the following:

```
source /remote/Xilinx/14.6/settings64.sh
export PATH=$PATH:/remote/Modelsim/10.1c/modeltech/linux_x86_64/
export LM_LICENSE_FILE=1717@io.ece.iastate.edu:27006@io.ece.iastate.edu
```


Lecture Topic Outline

- ✓ Lect-01: Introduction
- Lect-02: Embedded Platforms
- Lect-03: Processors and Memory
- Lect-04: Interfacing Technologies
- Lect-05: Software Optimization
- Lect-06: Accelerator Design
- Lect-07: Embedded Control Systems
- Lect-08: Embedded OS

Machine Problems (MPs)

- 5 team-based, applied assignments
 - Graded on completeness and effort
 - Significant hardware and software components
 - Two weeks each, with in-class and in-lab demos
- Tentative agenda:
 - MP-0: Platform Introduction
 - MP-1: Quad UAV Interfacing
 - MP-2: Digital Camera
 - MP-3: Target Acquisition
 - MP-4: UAV Control

Course Project

- Student-proposed, student-assessed embedded system design project
- Essentially a capstone project integrating your knowledge in digital logic, programming, and system design
- Something reasonable in a 5-6 week timeframe, likely leveraging existing lab infrastructure

Deliverables:

- Project proposal presentation and assessment rubric (week 9)
- Project presentation and demo (10 minutes, week 16)
- Project page on class wiki, with images / video (continuous)

Grading Policies

Grade components:

_	Machine	Problems	[5x]	(40%)
---	---------	----------	------	-------

- Homework (10%)
- Class Participation (5%)
- Midterm Exams [2x] (30%)
- Final Project (15%)

At first glance, CprE 488 appears to be quite a bit of work!

- Yes. Yes it is. ☺
- The lab/final project component is probably the most important
- If you are a valuable member of your lab team, you will get an A

Our goals as your instructor:

- To create a fun, yet challenging, collaborative learning environment
- To motivate the entire class to a 4.0 GPA
- To inspire you to learn more (independent study / MS thesis ideas?)

Some High-Level Challenges

- How much hardware do we need?
 - How fast is the CPU? How large is Memory?
- How do we meet our deadlines?
 - Faster hardware or cleverer software?
- How do we minimize power?
 - Turn off unnecessary logic?
 - Reduce memory accesses?
 - Data compression?
- Multi-objective optimization in a vast design space

Design Considerations: Mars Rovers

Mars Sojourner Rover (1997)

- About 25 pounds
- 25 x 19 x 12 inches
- 8-bit Intel 80C85
 - 100 KHz

Opportunity/ Spirit (2004)

- About 400 pounds
- $-5.2 \times 7.5 \times 4.9 \text{ ft}$
- 32-bit Rad6000
 - 20 MHz
 - cost: ??

Some High-Level Challenges

- How much hardware do we need?
 - How big is the CPU? Memory?
- How do we meet our deadlines?
 - Faster hardware or cleverer software?
- How do we minimize power?
 - Turn off unnecessary logic?
 - Reduce memory accesses?
 - Data compression?
- Multi-objective optimization in a vast design space

Some High-Level Challenges

- How much hardware do we need?
 - How big is the CPU? Memory?
- How do we meet our deadlines?
 - Faster hardware or cleverer software?
- How do we minimize power?
 - Turn off unnecessary logic?
 - Reduce memory accesses?
 - Data compression?
- Multi-objective optimization in a vast design space

- Exploring Martian surface (Power consumption)
 - Movement
 - Communications
 - Computation

Energy / Power

- Quadcopter Battery
 - Capacity: ~2000mAh
 - Max current: 35C, 7.4V
 - Quad
 - On average requires 20A
 - Average Watts required?
 - Average Flight time?

Energy / Power

- Quadcopter Battery
 - Capacity: ~2000mAh
 - Max current: 35C, 7.4V
 - Quad
 - On average requires 20A
 - 20A * 7.4V = 148 W
 - 2000/20,000=.1 hr=6 min

- Exploring Martian surface (Power consumption)
 - Movement: (??)
 - Communications: (??)
 - Computation: (??)
- Power Available
 - Solar panels (140W, 4-hours/day)
 - Battery storage

- Exploring Martian surface (Power consumption)
 - Movement: 100 W
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - Computation: 20W@20Mhz, 5W@2.5MHz
- Power Available
 - Solar panels (140W, 4-hours/day)
 - Battery storage

- Exploring Martian surface (Power consumption)
 - Movement: 100 W
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - Computation: 20W@20Mhz, 5W@2.5MHz
- Power Available
 - Solar panels (140W, 4-hours/day)
- Capabilities
 - -3,500 12,000 bit/s to Earth
 - $\sim 120,000$ bit/s to Orbiter

- Exploring Martian surface (Power consumption)
 - Movement: 100 W
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - Computation: 20W@20Mhz, 5W@2.5MHz
- Power Available
 - Solar panels (140W, 4-hours/day)
- Capabilities
 - -3,500 12,000 bit/s to Earth
 - $\sim 120,000$ bit/s to Orbiter
- Task
 - Image transmission:1024x1024 12-bit-pixels

- Communicating with Earth or Orbiter
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min widow/day for Obiter transmission
- Compute
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

- Communicating with Earth or Orbiter
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min widow/day for Obiter transmission
- Compute
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

Channel		Energy/ pic (J)			
Rov->Orb	5		600		
Rov->Earth	100		10,000		

- Communicating with Earth or Orbiter
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min widow/day for Obiter transmission
- Compute
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	
Rov->Orb	5	100	500	600	6	3,000	
Rov->Earth	100	1,000	100,000	10,000	10	1,000,000	

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min widow/day for Obiter transmission
- Compute
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	
Rov->Orb	5	100	500	600	6	3,000	
Rov->Earth	100	1,000	100,000	10,000	10	1,000,000	

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min widow/day for Obiter transmission
- How could you get a better image rate?

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	
Rov->Orb	5	100	500	600	6	3,000	
Rov->Earth	100	1,000	100,000	10,000	10	1,000,000	

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter (10 min), <u>10,000 bit/s</u> to Earth (3 hr)
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels=10,000,000 bits/image
- Compression: ICER (Compression Incremental cost-effectiveness Ratio): ~1 bit/pixel
 - 1,000,000 bits/image
- Compress 1/pixel per clock.
 - How long to compress 1 image?
 - How much Energy to compress 1 image?

							The state of the s	
							Comp time /pic (s)	
Rov->Orb	5	100	500	600	6	3,000		
Rov->Earth	100	1,000	100,000	10,000	10	1,000,000		

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter (10 min), <u>10,000 bit/s</u> to Earth (3 hr)
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels=10,000,000 bits/image
- Compression: ICER (Compression Incremental cost-effectiveness Ratio): ~1 bit/pixel
 - 1,000,000 bits/image
- Compress 1/pixel per clock.
 - How long to compress 1 image?
 - How much Energy to compress 1 image?

						_		
							Comp time /pic (s)	
Rov->Orb	5	100	500	600	6	3,000	.05 / .4	1/2
Rov->Earth	100	1,000	100,000	10,000	10	1,000,000	.05 / .4	1/2

Illustrative Design Exercise

 An illustrative example of embedded system design inspired by <u>Chapter 1</u> of the M. Wolf textbook

GPS Navigation Unit

Abstraction Levels

Abstraction Levels [cont]

Abstraction Levels [cont]

- Growing system complexities
- Move to higher levels of abstraction [ITRS07, itrs.net]
 - > Electronic system-level (ESL) design

Source: R. Doemer, UC Irvine

GPS Navigation Unit

Requirements

- Plain language description of what the user wants and expects to get
- May be developed in several ways:
 - Talking directly to customers (User Research)
 - Talking to marketing representatives
 - Providing <u>prototypes</u> to users for comment

Functional vs. Non-Functional Requirements

- Functional requirements:
 - output as a function of input
- Non-functional requirements:
 - time required to compute output;
 - size, weight, etc.;
 - power consumption;
 - reliability;
 - etc.

GPS Navigation Unit Requirements

Example: Table for summarizing metrics of interest

Name	GPS moving map
Purpose	
Inputs	
Outputs	
Functions	
Performance	
Manufacturing cost	
Power	
Physical size and weight	

GPS Navigation Unit Requirements

- Functionality: Hand held. Show major roads & landmarks.
- User interface: At least 400 x 600 pixel screen. Three buttons max. Pop-up menu.
- Performance: Map should scroll smoothly. No more than 1 sec power-up. Lock onto GPS within 15 seconds.
- Cost: \$120 street price = approx. \$40 cost of goods sold.
- Physical size/weight: Should fit in hand
- Power consumption: Should run for 8 hours on four AA batteries
- Any others?

Requirements: Summary & Prototype

	<u> </u>	
Name	GPS moving map	
Purpose	Consumer-grade moving map for driving use	
Inputs	Power button, two control buttons	
Outputs	Back-lit LCD display 400 × 600	
Functions	Uses 5-receiver GPS system; three user-selectable resolutions; always displays current latitude and longitude	
Performance	Updates screen within 0.25 seconds upon movement	
Manufacturing cost	\$40 O.27 RT-9A S (Downtown)	
Power	100 mW	

Physical size and	No more than $2'' \times 6''$, 12 ounces
weight	

GPS Navigation Unit

GPS Specification

- What should system include:
 - What is received from GPS;
 - Map data;
 - User interface;
 - Operations required to satisfy user requests;
 - Background operations needed to keep the system running
- Often described using mechanisms such as:
 - UML
 - Data/Control Flow diagrams, Compute Model (FSM)
 - Formal Method language (1st order logic, LTL)

System Specification

- Capture requirements
 - Functional
 - Free of any implementation details
 - Non-functional
 - Quality metrics, constraints
- Formal representation
 - Models of computation
 - Allow analysis of properties
 - Executable
 - Can validate using simulation
 - Can verify with formal methods
- Used for application development
 - Precise description of desired system behavior

Natural language

- Ambiguous
- Incomplete

GPS Navigation Unit

System Architecture

- Processing elements (PEs)
 - Processors
 - General-purpose, programmable
 - Digital signal processors (DSPs)
 - Application-specific instruction set processor (ASIP)
 - Custom hardware processors
 - Intellectual property (IP)
 - Memories

- Communication elements (CEs)
 - Transducers, bus bridges
 - I/O peripherals
- Busses
 - Communication media
 - Parallel, master/slave protocols
 - Serial and network media

- Heterogeneous multiprocessor systems
 - Multi-Processor Systemon-Chip (MPSoC)

GPS Unit System Architecture (Diagram)

GPS Unit Architecture

GPS Navigation Unit

Component Design/Implementation

Hardware

- Microarchitecture
- Register-transfer level (RTL)

Software binaries

- Application object code
- Real-time operating system (RTOS)
- Hardware abstraction layer (HAL

Interfaces

- Pins and wires
- Arbiters, muxes, interrupt controllers (ICs), etc.
- Bus protocol state machines

Mem

Bridge

- physical synthesis
 - Manufacturing
 - > Prototyping boards

Program

RTOS

Arbiter⁴

GPS Navigation Unit

Component Design and System Integration

- Must spend time architecting the system before coding
 - Draw pictures/diagrams at various levels of detail
- Evaluate Component Sourcing Options:
 - Ready-made,
 - Modified from existing designs,
 - Designed from scratch
- Putting components together early
 - Many bugs appear only at this stage
- Have a plan for integrating components to uncover bugs quickly, test as much functionality as early as possible

Important questions to keep in mind

- Does it really work?
 - Is the specification correct?
 - Does the implementation meet the spec?
 - How do we test for real-time characteristics?
 - How do we test on real data?
- How do we work on the system?
 - Observability, controllability?
 - What is our development platform?

Acknowledgments

- These slides are inspired in part by material developed and copyright by:
 - Marilyn Wolf (Georgia Tech)
 - Frank Vahid (UC-Riverside)
 - A. Gerstlauer (UT-Austin)
 - Daniel Gajski (UC-Irvine)
 - Ed Lee (UC-Berkeley)
 - James Hamblen (Georgia Tech)

Extra slides

GPS Unit System Specification (Diagram)

Abstraction Levels [cont.]

GPS Unit System Architecture (HW)

GPS Unit System Specification (SW)

