
CprE 488 – Embedded Systems Design

Lecture 3 – Processors and Memory

Joseph Zambreno

Electrical and Computer Engineering

Iowa State University

www.ece.iastate.edu/~zambreno

rcl.ece.iastate.edu

Although computer memory is no longer expensive, there’s always a finite size buffer
somewhere. – Benoit Mandelbrot

http://www.ece.iastate.edu/~zambreno
http://rcl.ece.iastate.edu/
http://rcl.ece.iastate.edu/

Lect-03.2 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

• AKA the “alphabet soup” of computer
architecture

Flynn’s (Updated) Taxonomy

Lect-03.3 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

• Embedded processor design tradeoffs

• ISA and programming models

• Memory system mechanics

• Case studies:

– ARM v7 CPUs (RISC)

– TI C55x DSPs (CISC)

– TI C64C (VLIW)

• Reading: Wolf chapters 2, 3.5

This Week’s Topic

Lect-03.4 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

• Note that implementations of the same architecture
can be different
– Cortex-A8 - architecture v7-A, with a 13-stage pipeline
– Cortex-A9 - architecture v7-A, with an 8-stage pipeline

ARM Architecture Revisions

Halfword and
signed halfword
/ byte support

System mode

Thumb
instruction set
(v4T)

Improved
interworking
CLZ
Saturated arithmetic
DSP MAC
instructions

Extensions:
 Jazelle (5TEJ)

SIMD Instructions
Multi-processing
v6 Memory architecture
Unaligned data support

Extensions:
 Thumb-2 (6T2)
 TrustZone® (6Z)
 Multicore (6K)
 Thumb only (6-M)

Thumb-2

Architecture Profiles

 7-A - Applications

 7-R - Real-time
 7-M - Microcontroller

v4 v5 v6 v7

Lect-03.5 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Data Sizes and Instruction Sets

• ARM is a 32-bit load / store RISC architecture

– The only memory accesses allowed are loads and stores

– Most internal registers are 32 bits wide

• ARM cores implement two basic instruction sets

– ARM instruction set – instructions are all 32 bits long

– Thumb instruction set – instructions are a mix of 16 and 32 bits

• Thumb-2 technology added many extra 32- and 16-bit instructions to the
original 16-bit Thumb instruction set

• Depending on the core, may also implement other instruction sets

– VFP instruction set – 32 bit (vector) floating point instructions

– NEON instruction set – 32 bit SIMD instructions

– Jazelle-DBX - provides acceleration for Java VMs (with additional software
support)

– Jazelle-RCT - provides support for interpreted languages

Lect-03.6 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

The ARM Register Set

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

User mode

spsr

r13 (sp)

r14 (lr)

IRQ FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr spsr

r13 (sp)

r14 (lr)

Undef

spsr

r13 (sp)

r14 (lr)

Abort

spsr

r13 (sp)

r14 (lr)

SVC

Current mode Banked out registers

ARM has 37 registers, all 32-bits
long

A subset of these registers is accessible in
each mode
Note: System mode uses the User mode
register set.

Lect-03.7 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Program Status Registers

• Condition code flags

– N = Negative result from ALU

– Z = Zero result from ALU

– C = ALU operation Carried out

– V = ALU operation oVerflowed

• Sticky Overflow flag - Q flag

– Architecture 5TE/J only

– Indicates if saturation has occurred

• J bit

– Architecture 5TEJ only

– J = 1: Processor in Jazelle state

• Interrupt Disable bits.

– I = 1: Disables the IRQ.

– F = 1: Disables the FIQ.

• T Bit

– Architecture xT only

– T = 0: Processor in ARM state

– T = 1: Processor in Thumb state

• Mode bits

– Specify the processor mode

27 31

N Z C V Q

28 6 7

I F T mode

16 23

8 15

5 4 0 24

f s x c

 U n d e f i n e d J

Lect-03.8 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

• ARM instructions can be made to execute conditionally by postfixing them with the
appropriate condition code field.

– This improves code density and performance by reducing the number of
forward branch instructions.

 CMP r3,#0 CMP r3,#0

 BEQ skip ADDNE r0,r1,r2

 ADD r0,r1,r2

skip

• By default, data processing instructions do not affect the condition code flags but
the flags can be optionally set by using “S”. CMP does not need “S”.

 loop

 …

 SUBS r1,r1,#1

 BNE loop

 if Z flag clear then branch

 decrement r1 and set flags

Conditional Execution and Flags

Lect-03.9 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Condition Codes

Not equal

Unsigned higher or same

Unsigned lower

Minus

Equal

Overflow

No overflow

Unsigned higher

Unsigned lower or same

Positive or Zero

Less than

Greater than

Less than or equal

Always

Greater or equal

EQ

NE

CS/HS

CC/LO

PL

VS

HI

LS

GE

LT

GT

LE

AL

MI

VC

Suffix Description

Z=0

C=1

C=0

Z=1

Flags tested

N=1

N=0

V=1

V=0

C=1 & Z=0

C=0 or Z=1

N=V

N!=V

Z=0 & N=V

Z=1 or N=!V

• The possible condition codes are listed below
– Note AL is the default and does not need to be

specified

Lect-03.10 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Conditional Execution Examples

if (r0 == 0)

{

 r1 = r1 + 1;

}

else

{

 r2 = r2 + 1;

}

C source code

 5 instructions
 5 words
 5 or 6 cycles

 3 instructions
 3 words
 3 cycles

 CMP r0, #0

 BNE else

 ADD r1, r1, #1

 B end

else

 ADD r2, r2, #1

end

 ...

ARM instructions

 unconditional

 CMP r0, #0

 ADDEQ r1, r1, #1

 ADDNE r2, r2, #1

 ...

conditional

Lect-03.11 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Data Processing Instructions

• Consist of :

– Arithmetic: ADD ADC SUB SBC RSB RSC
– Logical: AND ORR EOR BIC
– Comparisons: CMP CMN TST TEQ
– Data movement: MOV MVN

• These instructions only work on registers, NOT memory

• Syntax:

 <Operation>{<cond>}{S} Rd, Rn, Operand2

• Comparisons set flags only - they do not specify Rd
• Data movement does not specify Rn

• Second operand is sent to the ALU via barrel shifter.

Lect-03.12 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Register, optionally with shift operation

– Shift value can be either be:
• 5 bit unsigned integer
• Specified in bottom byte of

another register.

– Used for multiplication by
constant

Immediate value

– 8 bit number, with a range of
0-255.
• Rotated right through even

number of positions

– Allows increased range of 32-
bit constants to be loaded
directly into registers

Result

Operand 1

Barrel
Shifter

Operand 2

ALU

Using a Barrel Shifter

Lect-03.13 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Data Processing Exercise

 1. How would you load the two’s complement

representation of -1 into Register 3 using one
instruction?

 2. Implement an ABS (absolute value) function for a
registered value using only two instructions

 3. Multiply a number by 35, guaranteeing that it
executes in 2 core clock cycles

Lect-03.14 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

• No ARM instruction can contain a 32 bit immediate
constant
– All ARM instructions are fixed as 32 bits long

• The data processing instruction format has 12 bits
available for operand2

• 4 bit rotate value (0-15) is multiplied by two to give range

0-30 in steps of 2

• Rule to remember is

 “8-bits rotated right by an even number of bit positions”

0 7 11 8

immed_8

Shifter
ROR

rot

x2

Quick Quiz:
0xe3a004ff

MOV r0, #???

Immediate Constants

Lect-03.15 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Single Register Data Transfer

 LDR STR Word

 LDRB STRB Byte

 LDRH STRH Halfword

 LDRSB Signed byte load

 LDRSH Signed halfword load

• Memory system must support all access sizes

• Syntax:
– LDR{<cond>}{<size>} Rd, <address>

– STR{<cond>}{<size>} Rd, <address>

e.g. LDREQB

Lect-03.16 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

 Address Accessed

• Address accessed by LDR/STR is specified by a base register with an offset

• For word and unsigned byte accesses, offset can be:

– An unsigned 12-bit immediate value (i.e. 0 - 4095 bytes)
 LDR r0, [r1, #8]

– A register, optionally shifted by an immediate value
 LDR r0, [r1, r2]

 LDR r0, [r1, r2, LSL#2]

• This can be either added or subtracted from the base register:
 LDR r0, [r1, #-8]

 LDR r0, [r1, -r2, LSL#2]

• For halfword and signed halfword / byte, offset can be:

– An unsigned 8 bit immediate value (i.e. 0 - 255 bytes)

– A register (unshifted)

• Choice of pre-indexed or post-indexed addressing

• Choice of whether to update the base pointer (pre-indexed only)

 LDR r0, [r1, #-8]!

Lect-03.17 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Load/Store Exercise

 Assume an array of 25 words. A compiler associates

y with r1. Assume that the base address for the
array is located in r2. Translate this C
statement/assignment using just three instructions:

 array[10] = array[5] + y;

Lect-03.18 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

• There are 2 classes of multiply - producing 32-bit and 64-bit results

• 32-bit versions on an ARM7TDMI will execute in 2 - 5 cycles

– MUL r0, r1, r2 ; r0 = r1 * r2

– MLA r0, r1, r2, r3 ; r0 = (r1 * r2) + r3

• 64-bit multiply instructions offer both signed and unsigned versions

– For these instruction there are 2 destination registers

– [U|S]MULL r4, r5, r2, r3 ; r5:r4 = r2 * r3

– [U|S]MLAL r4, r5, r2, r3 ; r5:r4 = (r2 * r3) + r5:r4

• Most ARM cores do not offer integer divide instructions

– Division operations will be performed by C library routines or inline shifts

Multiply and Divide

Lect-03.19 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

• Branch : B{<cond>} label

• Branch with Link : BL{<cond>} subroutine_label

• The processor core shifts the offset field left by 2 positions, sign-extends
it and adds it to the PC

– ± 32 Mbyte range

– How to perform longer branches?

28 31 24 0

 Cond 1 0 1 L Offset

Condition field

Link bit 0 = Branch
 1 = Branch with link

23 25 27

Branch Instructions

Lect-03.20 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

ARM Pipeline Evolution

Instruction
Fetch

 Shift + ALU
Memory
Access

Reg
Write

Reg
Read

Reg
Decode

FETCH DECODE EXECUTE MEMORY WRITE

ARM9TDMI

ARM or Thumb
Inst Decode

Reg Select

Reg
Read Shift ALU

Reg
Write

ThumbARM
decompress

ARM decode
Instruction
Fetch

FETCH DECODE EXECUTE

ARM7TDMI

Lect-03.21 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

ARM Pipeline Evolution (cont.)

ARM11

Fetch
1

Fetch
2

Decode Issue

Shift ALU Saturate

Write
back

MAC
1

MAC
2

MAC
3

Address
Data
Cache
1

Data
Cache
2

Shift + ALU
Memory
Access Reg

Write

FETCH DECODE EXECUTE MEMORY WRITE

Reg Read

Multiply

Branch
Prediction

Instruction
Fetch

ISSUE

ARM or
Thumb
Instruction
Decode Multiply

Add

ARM10

Lect-03.22 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

ARM Pipeline Evolution (cont.)

ARM Cortex A8

Lect-03.23 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

• NEON is a wide SIMD data processing architecture
– Extension of the ARM instruction set (v7-A)
– 32 x 64-bit wide registers (can also be used as 16 x 128-bit wide registers)

• NEON instructions perform “Packed SIMD” processing
– Registers are considered as vectors of elements of the same data type
– Data types available: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, single prec.

float
– Instructions usually perform the same operation in all lanes

What is NEON?

Dn

Dm

Dd

Lane

Source
Registers
Source
Registers

Operation

Destination
Register

Elements Elements Elements

Lect-03.24 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

NEON Coprocessor Registers
• NEON has a 256-byte register file

– Separate from the core registers (r0-r15)
– Extension to the VFPv2 register file (VFPv3)

• Two different views of the NEON registers
– 32 x 64-bit registers (D0-D31)
– 16 x 128-bit registers (Q0-Q15)

• Enables register trade-offs
– Vector length can be variable
– Different registers available

Q0

Q1

Q15

:

D0

D1

D2

D3

:

D30

D31

D0

D1

D2

D3

:

Lect-03.25 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

NEON Vectorizing Example

• How does the compiler perform vectorization?
void add_int(int * __restrict pa,

 int * __restrict pb,

 unsigned int n, int x)

{

 unsigned int i;

 for(i = 0; i < (n & ~3); i++)

 pa[i] = pb[i] + x;

}

1. Analyze each loop:

 Are pointer accesses safe for
vectorization?

 What data types are being used?
How do they map onto NEON
vector registers?

 Number of loop iterations

void add_int(int *pa, int *pb,

 unsigned n, int x)

{

 unsigned int i;

 for (i = ((n & ~3) >> 2); i; i--)

 {

 *(pa + 0) = *(pb + 0) + x;

 *(pa + 1) = *(pb + 1) + x;

 *(pa + 2) = *(pb + 2) + x;

 *(pa + 3) = *(pb + 3) + x;

 pa += 4; pb += 4;

 }

}

2. Unroll the loop to the appropriate
number of iterations, and perform other
transformations like pointerization

+ + + + 3. Map each unrolled operation onto
a NEON vector lane, and generate
corresponding NEON instructions

pb

x

pa

+

0 127

Lect-03.26 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Processor Memory Map

Code

SRAM

System

Peripheral

External
Peripheral

External
SRAM

FFFF_FFFF

2000_0000

4000_0000

6000_0000

A000_0000

E000_0000

0000_0000

512MB

1GB

1 GB

512MB

512MB

512MB

ITM

Internal Private Peripheral Bus

E000_E000

E000_3000

E000_2000

E000_1000

E000_0000

E000_F000

E00F_F000

E004_2000

E004_1000

E004_0000

E00F_FFFF

External Private Peripheral Bus

DWT

FPB

NVIC

RESERVED

RESERVED

UNUSED

TPIU

ETM

ROM Table

E003_FFFF

(XN)

Lect-03.27 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

• Typical memory system can have multiple levels of cache
– Level 1 memory system typically consists of L1-caches, MMU/MPU and

TCMs
– Level 2 memory system (and beyond) depends on the system design

• Memory attributes determine cache behavior at different levels
– Controlled by the MMU/MPU (discussed later)
– Inner Cacheable attributes define memory access behavior in the L1

memory system
– Outer Cacheable attributes define memory access behavior in the L2

memory system (if external) and beyond (as signals on the bus)

• Before caches can be used, software setup must be performed

ARM Core

I-Cache RAM

D-Cache RAM

M
M

U
/M

P
U

B
IU

Off-chip
Memory

L2 Cache

L1 L2 L3

On-chip
SRAM

L1 and L2 Caches

Lect-03.28 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

31 13 12 5 4 2 1 0

Address

Cache line

3 8

Tag Set (= Index) Word Byte

Data Tag
Line 0

Line 1

Line
30 Line
31

v d
Data Tag

Line 0

Line 1

Line
30 Line
31

v d
Data Tag

Line 0

Line 1

Line
30 Line
31

v d
Data Tag

Line 0

Line 1

Line 254

Line 255

v d

v - valid bit d - dirty bit(s)

0 1 2 3 4 5 6 7 d

19

V
ic

ti
m

C
o
u
n
te

r

• Cache has 8 words of data in each
line

• Each cache line contains Dirty bit(s)
– Indicates whether a particular cache

line was modified by the ARM core

• Each cache line can be Valid or
invalid
– An invalid line is not considered

when performing a Cache Lookup

 Example 32KB ARM cache

Lect-03.29 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Cortex MPCore Processors

• Standard Cortex cores, with additional logic to support MPCore
– Available as 1-4 CPU variants

• Include integrated
– Interrupt controller
– Snoop Control Unit (SCU)
– Timers and Watchdogs

Lect-03.30 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Snoop Control Unit

• The Snoop Control Unit (SCU) maintains coherency between L1 data
caches
– Duplicated Tag RAMs keep track of what data is allocated in each CPU’s cache

• Separate interfaces into L1 data caches for coherency maintenance

– Arbitrates accesses to L2 AXI master interface(s), for both instructions and
data

• Optionally, can use address filtering
– Directing accesses to configured memory range to AXI Master port 1

CPU0

D$ I$

CPU1

D$ I$

CPU2

D$ I$

CPU3

D$ I$

Snoop Control Unit

TAG TAG TAG TAG

AXI Master 0 AXI Master 1

Lect-03.31 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

• Scratch pad is managed by software, not hardware

– Provides predictable access time

– Requires values to be allocated

• Use standard read/write instructions to access scratch
pad

Scratchpad Memory

Lect-03.32 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

• First DSP was AT&T DSP16:

– Hardware multiply-accumulate unit

– Harvard architecture

• Today, DSP is often used as a marketing term

• Ex: TI C55x DSPs:

– 40-bit arithmetic unit (32-bit values with 8 guard bits)

– Barrel shifter

– 17 x 17 multiplier

– Comparison unit for Viterbi encoding/decoding

– Single-cycle exponent encoder for wide-dynamic-range
arithmetic

– Two address generators

Digital Signal Processors

Lect-03.33 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

TI C55x Microarchitecture

Lect-03.34 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

TI C55x Overview

• Accumulator architecture:

– acc = operand op acc.

– Very useful in loops for DSP.

• C55x assembly language:

 MPY *AR0, *CDP+, AC0

Label: MOV #1, T0

• C55x algebraic assembly language:

AC1 = AR0 * coef(*CDP)

Lect-03.35 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Intrinsic Functions

• Compiler support for assembly language

• Intrinsic function maps directly onto an
instruction

• Example:

– int_sadd(arg1,arg2)

– Performs saturation arithmetic addition

Lect-03.36 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

C55x Registers

• Terminology:

– Register: any type of register

– Accumulator: acc = operand op ac

• Most registers are memory-mapped

• Control-flow registers:

– PC is program counter

– XPC is program counter extension

– RETA is subroutine return address

Lect-03.37 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

C55x Accumulators and Status Registers

• Four 40-bit accumulators: AC0, AC1, AC2, and
AC3

– Low-order bits 0-15 are AC0L, etc

– High-order bits 16-31 are AC0H, etc

– Guard bits 32-39 are AC0G, etc

• ST0, ST1, PMST, ST0_55, ST1_55, ST2_55,
ST3_55 provide arithmetic/bit manipulation
flags, etc

Lect-03.38 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

C55x Auxiliary Registers

• AR0-AR7 are auxiliary registers

• CDP points to coefficients for polynomial
evaluation instructions

– CDPH is main data page pointer

• BK47 is used for circular buffer operations
along with AR4-7

• BK03 addresses circular buffers

• BKC is size register for CDP

Lect-03.39 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

• 24-bit address space, 16 MB of memory

• Data, program, I/O all mapped to same physical
memory

• Addressability:

– Program space address is 24 bits

– Data space is 23 bits

– I/O address is 16 bits

C55x Memory Map

main data page 0

main data page 1

main data page 2

main data page 127

…

memory mapped registers

Lect-03.40 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

C55x Addressing Modes

• Three addressing modes:

– Absolute addressing supplies an address in an
instruction

– Direct addressing supplies an offset

– Indirect addressing uses a register as a pointer

Lect-03.41 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

C55x Data Operations

• MOV moves data between registers and memory:

– MOV src, dst

• Varieties of ADDs:

– ADD src,dst

– ADD dual(LMEM),ACx,ACy

• Multiplication:

– MPY src,dst

– MAC AC,TX,ACy

Lect-03.42 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

C55x Control Flow

• Unconditional branch:

– B ACx

– B label

• Conditional branch:

– BCC label, cond

• Loops:

– Single-instruction repeat

– Block repeat

Lect-03.43 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Efficient Loops

• General rules:

– Don’t use function calls

– Keep loop body small to enable local repeat (only
forward branches)

– Use unsigned integer for loop counter

– Use <= to test loop counter

– Make use of compiler---global optimization,
software pipelining

Lect-03.44 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

Single-Instruction Loop Example

STM #4000h,AR2 ; load pointer to source

STM #100h,AR3 ; load pointer to destination

RPT #(1024-1)

MVDD *AR2+,*AR3+ ; move

Lect-03.45 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

C55x subroutines

• Unconditional subroutine call:

– CALL target

• Conditional subroutine call:

– CALLCC adrs,cond

• Two types of return:

– Fast return gives return address and loop context
in registers.

– Slow return puts return address/loop on stack.

Lect-03.46 CprE 488 (Processors and Memory) Zambreno, Spring 2017 © ISU

• These slides are inspired in part by material
developed and copyright by:

– Marilyn Wolf (Georgia Tech)

– Steve Furber (University of Manchester)

– William Stallings

– ARM University Program

Acknowledgments

