CprE 488 — Embedded Systems Design

Lecture 3 — Processors and Memory

Joseph Zambreno
Electrical and Computer Engineering
Iowa State University

WWW.ece.iastate.edu/~zambreno
rcl.ece.iastate.edu

Although computer memory is no longer expensive, there'’s always a finite size buffer

somewhere. — Benoit Mandelbrot

http://www.ece.iastate.edu/~zambreno
http://rcl.ece.iastate.edu/
http://rcl.ece.iastate.edu/

Flynn's (Updated) Taxonomy

« AKA the “alphabet soup” of computer
architecture

Architecture

T

Instruction Flow Data Flow
/Y\
SISD SIMD MISD MIMD SPMD
A \
Shared Memory Distributed Memory Supercomputers
/\
MPP Distributed Systems

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.2

This Week's Topic

« Embedded processor design tradeoffs
ISA and programming models
Memory system mechanics

Case studies:

— ARM v7 CPUs (RISC)
— TI C55x DSPs (CISC)
—TI C64C (VLIW)

Reading: Wolf chapters 2, 3.5

Zambreno, Spring 2017 © ISU

CprE 488 (Processors and Memory)

Lect-03.3

ARM Architecture Revisions

v4 | v5 v6 v/ >

Halfword and Improved : SIMD Instructions gThumb-Z
signed halfword : interworking Multi-processing
/ byte support CLz _ _ v6 M_emory architecture Architecture Profiles

: Saturated arithmetic i Unaligned data support : o
System mode i DSP MAC i 7-A - Applications

! instructions i Extensions: i 7-R -Real-time
Thumb i Thumb-2 (6T2) 7-M - Microcontroller
instruction set { Extensions: i TrustZone® (62) '
(v4T) Jazelle (5TEJ) : Multicore (6K)

Thumb only (6-M)

* Note that ir:nplementatioﬁs of the same architecture
can be different

— Cortex-A8 - architecture v7-A, with a 13-stage pipeline
— Cortex-A9 - architecture v7-A, with an 8-stage pipeline

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.4

Data Sizes and Instruction Sets

« ARM is a 32-bit load / store RISC architecture
— The only memory accesses allowed are loads and stores
— Most internal registers are 32 bits wide

« ARM cores implement two basic instruction sets
— ARM instruction set — instructions are all 32 bits long
— Thumb instruction set — instructions are a mix of 16 and 32 bits

« Thumb-2 technology added many extra 32- and 16-bit instructions to the
original 16-bit Thumb instruction set

» Depending on the core, may also implement other instruction sets
— VFP instruction set — 32 bit (vector) floating point instructions
— NEON instruction set — 32 bit SIMD instructions

— Jazelle-DBX - provides acceleration for Java VMs (with additional software
support)

— Jazelle-RCT - provides support for interpreted languages

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.5

The ARM Register Set

Usermode IRQ. .. FIQ......uUndef __ Abort SVC......
r0 Pl
rl ARM has 37 registers, all 32-bits
r2 P long
r3
r4

A subset of these registers is accessible in
each mode '
Note: System mode uses the User mode
register set.

rl0
rll
rl2 Do
rl3 (sp) i I |r13 (sp)
rld (1lr) i 1 [rl4 (1r)

rl3 (sp) rl3 (sp) rl3 (sp)
rld (1lr) rld (lr) rld (lr)

rl5 (pc)
cpsr
.. Current mode-* R sesssssssmssssmssssmsssssssssmsmmEn: Banked out registerS'

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.6

Program Status Registers

31 28 27 24 23 16 15 8 7 6 5 4 0
NIZICIVQ JI U n d e fI i n e d IIIFT |n}°d|e| I
£ e I x s |
« Condition code flags Interrupt Disable bits.
— N = Negative result from ALU — I =1: Disables the IRQ.
— Z = Zero result from ALU — F = 1: Disables the FIQ.
— C = ALU operation Carried out
— V = ALU operation oVerflowed T Bit
— Architecture xT only
- Sticky Overflow flag - Q flag — T = 0: Processor in ARM state

— Architecture 5TE/J only — T = 1: Processor in Thumb state

— Indicates if saturation has occurred
« Mode bits
.] bit — Specify the processor mode

— Architecture 5TEJ only
— J = 1: Processor in Jazelle state

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.7

Conditional Execution and Flags

« ARM instructions can be made to execute conditionally by postfixing them with the
appropriate condition code field.

— This improves code density and performance by reducing the number of
forward branch instructions.

CMP r3,#0 CMP r3,#0
BEQ skip ADDNE rO,rl,r2
ADD rO,rl,xr2

Skip —

« By default, data processing instructions do not affect the condition code flags but
the flags can be optionally set by using "S”. CMP does not need "S”.

loop
é“UBs rl,rl,#1 < decrement r1 and set flags
BNE loop < if Z flag clear then branch

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.8

Condition Codes

« The possible condition codes are listed below

— Note AL is the default and does not need to be
specified

Suffix Description Flags tested
EQ Equal Z=1

NE Not equal Z2=0

CS/HS Unsigned higher or same C=1

CC/LO | Unsigned lower C=0

MI Minus N=1

PL Positive or Zero N=0

VS Overflow V=1

vC No overflow V=0

HI Unsigned higher C=1&2=0
LS Unsigned lower or same C=0o0rz=1
GE Greater or equal N=V

LT Less than NI=V

GT Greater than Z=0 & N=V
LE Less than or equal =1 or N=IV
AL Always

Zambreno, Spring 2017 © ISU

CprE 488 (Processors and Memory)

Lect-03.9

Conditional Execution Examples

C source code

ARM instructions

if (xr0 == 0)
{

rl =rl + 1;
}
else
{

r2 =r2 + 1;
}

unconditional conditional
CMP rO0, #0 CMP r0, #0
BNE else ADDEQ rl, rl, #1
ADD rl, rl, #1 ADDNE r2, r2, #1
B end
else
ADD r2, r2, #1
end
= 5 instructions = 3 instructions
= 5 words = 3 words
= 5or6 cycles = 3 cycles

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory)

Lect-03.10

Data Processing Instructions

e Consist of :
— Arithmetic: ADD ADC SUB SBC RSB RSC
— Logical: AND ORR EOR BIC
— Comparisons: CMP CMN TST TEQ

— Data movement: MOV MVN

« These instructions only work on registers, NOT memory

« Syntax:

<Operation>{<cond>} {S} Rd, Rn, Operand2

« Comparisons set flags only - they do not specify Rd
« Data movement does not specify Rn

« Second operand is sent to the ALU via barrel shifter.

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.11

Using a Barrel Shifter

Operand 1 Operand 2 ... Register, optionally with shift operation
N — Shift value can be either be:
% « 5 bit unsigned integer
l "" « Specified in bottom byte of
another register.

Barrel — Used for multiplication by
Shifter constant

Immediate value

— 8 bit number, with a range of
0-255.
 Rotated ri?ht through even
number of positions
— Allows increased range of 32-
bit constants to be loaded
directly into registers

Result

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.12

Data Processing Exercise

1. How would you load the two’s complement
representation of -1 into Register 3 using one
instruction?

2. Implement an ABS (absolute value) function for a
registered value using only two instructions

3. Multiply a number by 35, guaranteeing that it
executes in 2 core clock cycles

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.13

Immediate Constants

« No ARM instruction can contain a 32 bit immediate

constant
— All ARM instructions are fixed as 32 bits long

« The data processing instruction format has 12 bits
available for operand2

11 87 0
i d_8 - -
| l-|0t| | |I |n‘=e|_| | Qu|ck Qu|z:
X) Oxe3a004ff
SlTiAEEy MOV r0, #7279

ROR

4 bit rotate value (0-15) is multiplied by two to give range
0-30 in steps of 2

* Rule to remember is
“8-bits rotated right by an even number of bit positions”

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.14

Single Register Data Transfer

LDR STR Word

LDRB STRB Byte

LDRH STRH Halfword

LDRSB Signed byte load
LDRSH Signed halfword load

« Memory system must support all access sizes

 Syntax:
— LDR{<cond>}{<size>} Rd, <address>
— STR{<cond> }{<size>} Rd, <address>

e.g. LDREQB

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory)

Lect-03.15

Address Accessed

Address accessed by LDR/STR is specified by a base register with an offset
For word and unsigned byte accesses, offset can be:

— An unsigned 12-bit immediate value (i.e. 0 - 4095 bytes)
IDR r0, [rl, #8]

— A register, optionally shifted by an immediate value
IDR r0, [rl, r2]

ILDR r0, [rl, r2, LSL#2]

This can be either added or subtracted from the base register:
IDR r0, [rl, #-8]

ILDR r0, [rl, -r2, LSL#2]
For halfword and signed halfword / byte, offset can be:
— An unsigned 8 bit immediate value (i.e. 0 - 255 bytes)
— A register (unshifted)
Choice of pre-indexed or post-indexed addressing

Choice of whether to update the base pointer (pre-indexed only)
ILDR r0, [rl, #-8]!

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.16

Load/Store Exercise

Assume an array of 25 words. A compiler associates

y with r1. Assume that the base address for the
array is located in r2. Translate this C

statement/assignment using just three instructions:

array[10] = array[5] + vy;

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.17

Multiply and Divide

There are 2 classes of multiply - producing 32-bit and 64-bit results
« 32-bit versions on an ARM7TDMI will execute in 2 - 5 cycles

— MUL r0O, rl, r2 ; 0

; rl * r2
— MLA rO, rl, r2, r3

; 0O = (rl * r2) + r3

64-bit multiply instructions offer both signed and unsigned versions
— For these instruction there are 2 destination registers

— [U|S]MULL r4, r5, r2, r3 ; r5:xrd = r2 * r3
— [U|S]MLAL r4, r5, r2, r3 ; r5:r4

(r2 * r3) + r5:r4

« Most ARM cores do not offer integer divide instructions
— Division operations will be performed by C library routines or inline shifts

Zambreno, Spring 2017 © ISU

CprE 488 (Processors and Memory) Lect-03.18

Branch Instructions

Branch : B{<cond>} label
Branch with Link : BL{<cond>} subroutine label

0

31 28 27 25 2423
17 1 rFr 1ttt 1 >t 11717 7 17 17 7 717 117711
Cond 1 0 1)L Offset

— L Link bit 0=Branch

1 = Branch with link

Condition field

The processor core shifts the offset field left by 2 positions, sign-extends

it and adds it to the PC
— + 32 Mbyte range

— How to perform longer branches?

Lect-03.19

Zambreno, Spring 2017 © ISU

CprE 488 (Processors and Memory)

ARM Pipeline Evolution

ARM7TDMI
ARM decode RED Reg
322'3:,'.’,,72;” Read Shift ALU Write
Reg Select
FETCH DECODE EXECUTE
ARM9TDMI

ARM or Thumb
Inst Decode

Shift + ALU
Reg Reg
Decode Read

FETCH DECODE EXECUTE MEMORY WRITE

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.20

ARM Pipeline Evolution (cont.)

ARM10
Branch . Memory
Hicel G4 ?:Ll:dmcl’)r Reg Read SINEEASS EeEs
Instruction tnStruction .
Fetch pecode Multiply m:étlply
FETCH ISSUE DECODE EXECUTE MEMORY WRITE
ARM11

Saturate

Fetch Fetch Decode Issue MAC Write
1 pl 2 3 back

Data
Address Cache
1

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.21

ARM Pipeline Evolution (cont.)

FO F1 F2 DO D1 D2 D3 D4 EO E1 E2 E3 E4 E5

Branch mispredict

ARM Cortex A8 penalty =13 cycles Instruction execute and load/store
l
.’
: >
Instruction 3 ALU/MUL pipe 0 BP
f = update
etch | 3 B
> 1| €
RAM [, |12-entry)) I
AGU» + fetch Instruction decode 3 . BP
TLB [”| queue || & plALU pipe 1
> A & update
BTB] @ z
GHB 23 BP
RS o i
)2 LS pipe O or 1 update
Integer register write back
|
v ALU BP
B | Shit B + [Sat "update" wB ALU
> L multiply
= MUL MUL MUL pipe 0
n — §.->1->2->3->ACC->WB
Early Dec/seq —> —> —> E
Dec —> B ALU
Score board : 3
Dec queue RegFile INST 1 Q || Shit P > sat » BP bl ws | ALU pipe 1
read/write ot ID remap — " 2 ﬂ;gs . update Pipe
issue logic 2
Early o | 5 s
D ec > —> —P
e B [ALU LS pipeline > WB I;:)aedészorn:

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.22

What is NEON?

« NEON is a wide SIMD data processing architecture
— Extension of the ARM instruction set (v7-A)
— 32 x 64-bit wide registers (can also be used as 16 x 128-bit wide registers)

Source]
Registers
Elements t el el | on
Operation]

| Destination
Dd
Reai

| I

v v
Lane

« NEON instructions perform “Packed SIMD" processing
— Registers are considered as vectors of elements of the same data type

- 1I:Dlata types available: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, single prec.
oat

— Instructions usually perform the same operation in all lanes

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.23

NEON Coprocessor Registers

« NEON has a 256-byte register file
— Separate from the core registers (r0-r15)
— Extension to the VFPv2 register file (VFPV3)
« Two different views of the NEON registers
— 32 x 64-bit registers (D0-D31)
— 16 x 128-bit registers (Q0-Q15)

DO

Q0 eeeee
Dl --------
D2

Q1 eeeee
D3
D30

llllllll 15 00000

D31 E

« Enables register trade-offs
— Vector length can be variable
— Different registers available

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.24

NEON Vectorizing Example

« How does the compiler perform vectorization?

void add int(int * restrict pa, 2. Unroll the loop to the appropriate
int * restrict pb, number of iterations, and perform other

unsigned int n, int x) transformations like pointerization
void add int(int *pa, int *pb,
unsigned n, int x)

{
unsigned int i;
for(i = 0; i < (n & ~3); i++)

pa[i] = pb[i] + x; {

unsigned int i;

} for (i = ((n & ~3) >> 2); i; i--)

1. Analyze each loop: {
* = * .
= Are pointer accesses safe for N S
vectorization? *(pa + 2) = -
= What data types are being used? * (Pi‘_* 4:_") = *(pb
How do they map onto NEON } pa = o B
' ?
vector registers: b o1 o1 o1 2] < pb
= Number of loop iterations
Le K K K | < x
3. Map each unrolled operation onto +
a NEON vector lane, and generate
corresponding NEON instructions | | | | | ©~ pa

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.25

Processor Memory Map

External Private Peripheral Bus

EOOF FFFF
EOOF_F000

FFFF_FFFF
E004_ 2000 System (XN)

E004 1000 E000_0000

E004 0000

External

E003 FFFF Peripheral

E000_F000

E000_E000

E000_3000 External
E000_2000 SRAM

E000_1000
E000_0000 6000_0000

Internal Private Peripheral Bus Peripheral

SRAM

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory)

Lect-03.26

L1 and L2 Caches

E ¢ *| [-Cache RAM 3 i : » L2 Cache [« : i :
: v : : : : |
|2 : i | | Off-chip :
i g ARM Core _ < | :: On-chip | | Memory i
k } 8| i | SRAM i i !
i~ o pcacheram JF ! ! E i
"""""" u BT T R

« Typical memory system can have multiple levels of cache

— 'II_'eC\I/\?I 1 memory system typically consists of L1-caches, MMU/MPU and
S

— Level 2 memory system (and beyond) depends on the system design

« Memory attributes determine cache behavior at different levels
— Controlled by the MMU/MPU (discussed later)

— Inner Cacheable attributes define memory access behavior in the L1
memory system

— Outer Cacheable attributes define memory access behavior in the L2
memory system (if external) and beyond (as signals on the bus)

« Before caches can be used, software setup must be performed

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.27

Example 32KB ARM cache

Address

31 13 12 54 21

0

19 ,

/

8 J(3,

v

Tag v

Victim

Counter

Data d

=
L&

L

-y

-

v - valid bit d - dirty bit(s)

v

Cache line
-
-
-
- d
-
-
-
-
- -~
- ”
-
-

-

--"+ Cache has 8 words of data in each

line
« Each cache line contains Dirty bit(s)
— Indicates whether a particular cache
line was modified by the ARM core
- Each cache line can be Valid or
invalid
— An invalid line is not considered
when performing a Cache Lookup

Zambreno, Spring 2017 © ISU

CprE 488 (Processors and Memory) Lect-03.28

Cortex MPCore Processors

« Standard Cortex cores, with additional logic to support MPCore
— Available as 1-4 CPU variants

e In

VII_\FHI[_H_IWI_\V\WW

Cortex™-A5 MPCore

clude integrated

Interrupt controller
Snoop Control Unit (SCU)
Timers and Watchdogs

i @ E E R R EEEE

ARM CoreSight™ Multicore Debug and Trace Architecture

FPU/NEON |E,,rFM FPU/NEON |E,',r,;M FPU/INEON |E,,r,;M FPUNEON | §TT

Cortex-A5 CPU| |Cortex-A5 CPU| |Cortex-A5 CPU| |Cortex-A5 CPU

|-Cache| D-Cache |I|-Cache | D-Cache |I-Cache| D-Cache |l|-Cache | D-Cache;

Snoop Control Unit (SCU)

eneric

ibution | Cache-2-Cache Snoop e
Transfers Filtering -

Advanced Bus Interface Unit

LJ[_JLPI_JLJLH_JLJLII_J

uuLiuuuuuuiuu

IS EnEnEnEnEnEnEn

ARM CoreSight™ Multicore Debug and Trace Architecture

rrumeon | | PIM | |epumean |Pw

Frumeon | PV

PTM
FPU/NEON || ¥

Cortex-A3 CPU | | Cortex-A3 CPU

Cortex-A9 CPU

Cortex-A9 CPU

|-Cache | D-Cache| ||-Cache| D-Cache

|-Cache | [D-Cache

|-Cache| |D-Cache:

and Distribution

Cache-2-Cache
Transfer

Snoop
s Filtering

Snoop Control Unit {SCU)

Generic ~
ccelerator
oherence

o}

eneric
Interrupt Control

Primary AMBA 3 B4bit Interface

mEnEnEnEsEsEsEnEnEeENEN

Cortex-A9 MPCore

Advanced Bus Interface Unit

Optional 2*I/F with Address Filtering

[[[R [y i |

N [[y gy vy

Zambreno, Spring 2017 © ISU

CprE 488 (Processors and Memory)

Lect-03.29

Snoop Control Unit

. ThehSnoop Control Unit (SCU) maintains coherency between L1 data
caches

— Duplicated Tag RAMs keep track of what data is allocated in each CPU’s cache
« Separate interfaces into L1 data caches for coherency maintenance

- Q\rbitrates accesses to L2 AXI master interface(s), for both instructions and
ata

« Optionally, can use address filtering
— Directing accesses to configured memory range to AXI Master port 1

Snoop Conirol Unit :
v

7 7 3 7
TAG TAG TAG TAG
bhy o bl v

D$ I$ D$ I$ D$ I$ D$ I$

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.30

Scratchpad Memory

 Scratch pad is managed by software, not hardware
— Provides predictable access time
— Requires values to be allocated

« Use standard read/write instructions to access scratch
pad

Main memory
Cache hit Scratch pad hit
—{ Memory controller |-——
A
Cache Scratch pad

CPU

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.31

Digital Signal Processors

* First DSP was AT&T DSP16:

— Hardware multiply-accumulate unit
— Harvard architecture

« Today, DSP is often used as a marketing term

« Ex: TI C55x DSPs:
— 40-bit arithmetic unit (32-bit values with 8 guard bits)
— Barrel shifter
— 17 x 17 multiplier
— Comparison unit for Viterbi encoding/decoding

— Single-cycle exponent encoder for wide-dynamic-range
arithmetic

— Two address generators

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.32

TI C55x Microarchitecture

3 data read busses 16

3 data read address busses : 24

Program address bus ; 24

A A LAAJ
Program read bus
32 Instruction Erogram Address Data
. ow A .
unit) unit unit
unit
2 data write busses 16

2 data write address busses

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.33

TI C55x Overview

« Accumulator architecture:
— acc = operand op acc.
— Very useful in loops for DSP.

« C55x assembly language:
MPY *ARO, *CDP+, ACO
Label: MOV #1, TO

» C55x algebraic assembly language:
AC1 = ARO * coef(*CDP)

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory)

Lect-03.34

Intrinsic Functions

« Compiler support for assembly language

« Intrinsic function maps directly onto an
Instruction

« Example:
—Int_sadd(argl,arg2)
— Performs saturation arithmetic addition

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory)

Lect-03.35

C55x Registers

* Terminology:
— Register: any type of register
— Accumulator: acc = operand op ac

» Most registers are memory-mapped

 Control-flow registers:
— PC is program counter
— XPC is program counter extension
— RETA is subroutine return address

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory)

Lect-03.36

C55x Accumulators and Status Registers

« Four 40-bit accumulators: ACO, AC1, AC2, and
AC3
— Low-order bits 0-15 are ACOL, etc
— High-order bits 16-31 are ACOH, etc
— Guard bits 32-39 are ACOG, etc

« STO, ST1, PMST, STO_55, ST1 55, ST2_55,
ST3_55 provide arithmetic/bit manipulation
flags, etc

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.37

C55x Auxiliary Registers

« ARO-AR7 are auxiliary registers

« CDP points to coefficients for polynomial
evaluation instructions

— CDPH is main data page pointer

« BK47 is used for circular buffer operations
along with AR4-7

« BKO3 addresses circular buffers
« BKC is size register for CDP

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory)

Lect-03.38

C55x Memory Map

« 24-bit address space, 16 MB of memory

« Data, program, I/O all mapped to same physical
memory

 Addressability:
— Program space address is 24 bits

— Data space is 23 bits
— I/O address is 16 bits

memory mapped registers

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.39

C55x Addressing Modes

« Three addressing modes:

— Absolute addressing supplies an address in an
iInstruction

— Direct addressing supplies an offset
— Indirect addressing uses a register as a pointer

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.40

C55x Data Operations

« MOV moves data between registers and memory:
— MOV src, dst

 Varieties of ADDs:

— ADD src,dst

— ADD dual(LMEM),ACx,ACy
 Multiplication:

— MPY src,dst

— MAC AC, TX,ACy

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.41

C55x Control Flow

« Unconditional branch:
— B ACx
— B label

 Conditional branch:
— BCC label, cond

* Loops:
— Single-instruction repeat
— Block repeat

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.42

Efficient Loops

e General rules:
— Don't use function calls

— Keep loop body small to enable local repeat (only
forward branches)

— Use unsigned integer for loop counter
— Use <= to test loop counter

— Make use of compiler---global optimization,
software pipelining

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.43

Single-Instruction Loop Example

STM #4000h,AR2 ; load pointer to source

STM #100h,AR3 ; load pointer to destination
RPT #(1024-1)
MVDD *AR2+,*AR3+ ; move

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.44

C55x subroutines

« Unconditional subroutine call:
— CALL target

* Conditional subroutine call:
— CALLCC adrs,cond

« Two types of return:

— Fast return gives return address and loop context
In registers.

— Slow return puts return address/loop on stack.

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.45

Acknowledgments

* These slides are inspired in part by material
developed and copyright by:
— Marilyn Wolf (Georgia Tech)
— Steve Furber (University of Manchester)
— William Stallings
— ARM University Program

Zambreno, Spring 2017 © ISU CprE 488 (Processors and Memory) Lect-03.46

