
CprE 488 – Embedded Systems Design

Lecture 5 – Embedded Operating Systems

Joseph Zambreno

Electrical and Computer Engineering

Iowa State University

www.ece.iastate.edu/~zambreno

rcl.ece.iastate.edu

...the Linux philosophy is “laugh in the face of danger”. Oops. Wrong one. “Do it
yourself”. That’s it. – Linux Torvalds

http://www.ece.iastate.edu/~zambreno
http://rcl.ece.iastate.edu/
http://rcl.ece.iastate.edu/

Lect-05.2 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• We have already run into some limitations of the
standalone process model:
– Single application, growing in complexity quickly
– Lots of polling loops, deep nested ‘if’ statements

• We could continue in this direction, but a modern
Operating System (OS) provides streamlined
mechanisms for:
– Preemptive multitasking
– Device drivers
– Memory management
– File systems

• It would be insane to try to cover all the major issues
involved in embedded OS in a single lecture

Motivation

Lect-05.3 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• Embedded Operating System features
– Processes and scheduling

• Context switching

• Scheduler policies

• Real-Time Operating Systems (RTOS)

– Atomic operations

– Inter-processes communication

– Virtual memory

– Examples along the way:
• Linux, POSIX, freeRTOS.org

• ARM architecture support

• Reading: Wolf chapter 6, 3.5

This Week’s Topic

Lect-05.4 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Reactive Systems

• Respond to external events:
– Engine controller

– Seat belt monitor

• Requires real-time response:
– System architecture

– Program implementation

• May require a chain reaction among multiple
processors

Lect-05.5 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Tasks and Processes

• A task is a functional
description of a
connected set of
operations

• Task can also mean a
collection of processes

• A process is a unique
execution of a program

– Several copies of a
program may run
simultaneously or at
different times

• A process has its own
state:

– registers

– memory

• The operating system
manages processes

Lect-05.6 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• A process can be in one of three states:

– executing on the CPU

– ready to run

– waiting for data

Process State

executing

ready waiting

gets data
and CPU

needs
data

gets data

needs data

preempted
gets
CPU

Lect-05.7 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Embedded vs. General-Purpose Scheduling

• Workstations try to avoid starving processes
of CPU access

– Fairness == access to CPU

• Embedded systems must meet deadlines

– Low-priority processes may not run for a long
time

Lect-05.8 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• Timer interrupt gives
CPU to kernel

– Time quantum is
smallest increment of
CPU scheduling time

• Kernel decides what
task runs next

• Kernel performs
context switch to new
context

Preemptive Scheduling

Lect-05.9 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Context Switching

• Set of registers that define a process’s state is
its context

– Stored in a record

• Context switch moves the CPU from one
process’s context to another

• Context switching code is usually assembly
code

– Restoring context is particularly tricky

Lect-05.10 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

freeRTOS.org Context Switch

Lect-05.11 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

freeRTOS.org Timer Handler

void vPreemptiveTick(void) {

 /* Save the context of the current task. */

 portSAVE_CONTEXT();

 /* Increment the tick count - this may wake a task. */

 vTaskIncrementTick();

 /* Find the highest priority task that is ready to run. */

 vTaskSwitchContext();

 /* End the interrupt in the AIC. */

 AT91C_BASE_AIC->AIC_EOICR = AT91C_BASE_PITC->PITC_PIVR;

 portRESTORE_CONTEXT();

}

Lect-05.12 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

ARM Context Switch

; Dump user registers above R13.

; Pick up the user status

; and dump with return address below.

; Load next process info pointer.

; If it is zero, it is invalid

; Pick up status and return address.

; Restore the status.

; Get the rest of the registers

; and return and restore CPSR.

; Insert "no next process code" here.

STM sp, {R0-lr}^

MRS R0, SPSR

STMDB sp, {R0, lr}

LDR sp, [R12], #4

CMP sp, #0

LDMDBNE sp, {R0, lr}

MSRNE SPSR_cxsf, R0

LDMNE sp, {R0-lr}^

NOP

SUBSNE pc, lr, #4

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

User mode

spsr

r13 (sp)

r14 (lr)

IRQ FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr spsr

r13 (sp)

r14 (lr)

Undef

spsr

r13 (sp)

r14 (lr)

Abort

spsr

r13 (sp)

r14 (lr)

SVC

Current mode Banked out registers

ARM has 37 registers, all 32-bits
long

A subset of these registers is accessible in
each mode
Note: System mode uses the User mode
register set.

Lect-05.13 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Real-Time Systems

• What is a real-time system?

• Which of the following is real-time?
– A program that processes 100 video frames per

second?

– A program that that process 1 video frame per 10
seconds?

• A better name
– “Get things done on time” Systems

• They are about getting things done on time, not
getting things done fast

Lect-05.14 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Real-Time Systems: Key Terms/Concepts

• Task

– Cost: time for processor to complete task without
interruptions

– Release time: when task is ready to be run

– Deadline: time by which task needs to completed

– Period: time between release times

• Task-set schedule: order in which tasks are
allocated the CPU

• Scheduling policy (algorithm): means by
which (i.e. rules followed) to create a task-set
schedule

Lect-05.15 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Scheduling: Period vs Aperiodic

• Periodic process: executes on (almost) every
period

• Aperiodic process: executes on demand

• Analyzing aperiodic process sets is harder---
must consider worst-case combinations of
process activations

Lect-05.16 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Timing Requirements on Processes

• Period: interval between process activations

• Initiation interval: reciprocal of period

• Initiation time: time at which process
becomes ready

• Deadline: time at which process must finish

• What happens if a process doesn’t finish by
its deadline?

– Hard deadline: system fails if missed

– Soft deadline: user may notice, but system
doesn’t necessarily fail

Lect-05.17 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Priority-driven Scheduling

• Each process has a priority

• CPU goes to highest-priority process that is
ready

• Priorities determine scheduling policy:

– Fixed (Static) priority

– Time-varying (Dynamic) priorities

Lect-05.18 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Priority-driven Scheduling Example

• Rules:

– Each process has a fixed priority (1 highest)

– Highest-priority ready process gets CPU

– Process will not self stop (i.e. block) until done

– Pre-emptive scheduling

• Processes

– P1: priority 1, execution time 10, release time 15

– P2: priority 2, execution time 30, release time 0

– P3: priority 3, execution time 20, release time 18

Lect-05.19 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Priority-driven Scheduling Example (cont.)

time

P2 ready t=0 P1 ready t=15

P3 ready t=18

0 30 10 20 60 40 50

P2 P2 P1 P3

P1: priority 1, execution time 10, release time 15

P2: priority 2, execution time 30, release time 0

P3: priority 3, execution time 20, release time 18

Lect-05.20 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

The Scheduling Problem

• Can we meet all deadlines?

– Must be able to meet deadlines in all cases

• How much CPU horsepower do we need to
meet our deadlines?

Lect-05.21 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

CPU Utilization

• T1: PPM update

– Cost = 10 ms

– Deadline = 25 ms

– Period = 25 ms

• What is the CPU utilization of T1?

Lect-05.22 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Scheduling Example (with preemption)

• T1: PPM update
– Cost = 10 ms
– Deadline = 25 ms
– Period = 25 ms

• T2: Video processing
– Cost = 20 ms
– Deadline = 50 ms
– Period = 50 ms

• What rules to follow for scheduling

– Let’s say that the more often a task needs to run, the
higher the priority (allow preemption)

– Draw out schedule and see if we miss a deadline

Lect-05.23 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Scheduling Example (no preemption)

• T1: PPM update
– Cost = 10 ms
– Deadline = 25 ms
– Period = 25 ms

• T2: Video processing
– Cost = 20 ms
– Deadline = 50 ms
– Period = 50 ms

• What rules to follow for scheduling

– Let’s say that the more often a Task needs to run, the
higher the priority (now allow NO preemption)

– Is there a release pattern that can cause a task to
miss a deadline?

Lect-05.24 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Scheduling Metrics

• How do we evaluate a scheduling policy:

– Ability to satisfy all deadlines (Feasibility)

– CPU utilization---percentage of time devoted to
useful work

– Scheduling overhead---time required to make
scheduling decision

Lect-05.25 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Scheduling Metrics: Feasibility

• For previous preemption example

– How long do we have to draw out the schedule
before we know we will never miss a deadline?

– What if we had 3 tasks with period 3ms, 4ms, and
7ms?

– For a general task set, for how do we have to
draw out the schedule?

Lect-05.26 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Scheduling Metrics: Feasibility

• For previous preemption example
– How long do we have to draw out the schedule

before we know we will never miss a deadline?

– What if we had 3 tasks with period 3ms, 4ms, and
7ms? Answer: 84 ms

– For a general task set, how do we have to draw out
the schedule? Answer: Lowest common multiple of
Task periods (a task set’s Hyper Period). This is the
time it takes before all Tasks release times
synchronize after time = 0

• Is there a better way to determine is feasible
(i.e. schedule using a given policy)? Yes! RMA

Lect-05.27 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Rate Monotonic Scheduling

• RMS (Liu and Layland): widely-used,
analyzable scheduling policy

• Analysis is known as Rate Monotonic Analysis
(RMA)

– All process run on single CPU

– Zero context switch time

– No data dependencies between processes

– Process execution time is constant

– Deadline is at end of period

– Highest-priority ready process runs

Lect-05.28 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Process Parameters

• Ti is computation time of process i; ti is
period of process i.

period ti

Pi

 computation time Ti

Lect-05.29 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Rate-Monotonic Analysis

• Response time: time required to finish
process

• Critical instant: scheduling state that gives
worst response time

• Critical instant occurs when all higher-priority
processes are ready to execute

Lect-05.30 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Critical Instant

P4

P3

P2

P1

critical
instant

P1 P1 P1 P1

P2 P2

P3

interfering processes

Lect-05.31 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

RMS Priorities

• Optimal (fixed) priority assignment:

– Shortest-period process gets highest priority

– Priority inversely proportional to period

– Break ties arbitrarily

• No fixed-priority scheme does better

Lect-05.32 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

RMS CPU Utilization

• Utilization for n processes is

–S i Ti / ti

• As number of tasks approaches infinity,
maximum utilization approaches 69%

– If the Task set Utilization <= 69%, then RMS is
guaranteed to meet all deadlines

– If Utilization > 69%, then must draw schedule
for the Lowest Common Multiple (LCM) of the
Task set periods.

– Positive: Quick way to determine Feasibility

– Negative: Gives up about 30% of CPU Utilization

Lect-05.33 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Earliest-Deadline-First Scheduling

• EDF: dynamic priority scheduling scheme

• Process closest to its deadline has highest
priority

• Requires recalculating processes at every
timer interrupt

• EDF can use 100% of CPU

– But part of that 100% will be used for
computing/updating Task priorities

Lect-05.34 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Modified Scheduling Example

• T1: PPM update

– Cost = 7 ms

– Deadline = 12 ms

– Period = 12 ms

• T2: Video processing

– Cost 20.5 ms

– Deadline 50 ms

– Period = 50 ms

• Lets try RMS first

Lect-05.35 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

EDF Implementation

• On each timer interrupt:

– Compute time to deadline

– Choose process closest to deadline

• Generally considered too expensive to use in
practice

Lect-05.36 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Scheduling Problems

• What if your set of processes is
unschedulable?

– Change deadlines in requirements

– Reduce execution times of processes

– Get a faster CPU

• Note for RMS: If periods of task sets are
“Harmonic” then RMS can handle 100%
utilization

Lect-05.37 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Fixed Priority Concern: Priority Inversion

• Priority inversion: low-priority process keeps
high-priority process from running

• Improper use of system resources can cause
scheduling problems:

– Low-priority process grabs I/O device

– High-priority device needs I/O device, but can’t
get it until low-priority process is done

• Can cause deadlock

Lect-05.38 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Solving Priority Inversion

• Priority Inheritance: Have process inherit the
priority of the highest process being blocked

– Can still have deadlock

• Priority Ceilings: Process can only enter a
critical section of code, if no other higher
priority process owns a resource that it may
need.

– Solves deadlock issue

Lect-05.39 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Context-Switching Time

• Non-zero context switch time can push limits
of a tight schedule

• Hard to calculate effects---depends on order
of context switches

• In practice, OS context switch overhead is
small (hundreds of clock cycles) relative to
many common task periods (ms – ms)

Lect-05.40 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Interprocess Communication

• Interprocess communication (IPC): OS
provides mechanisms so that processes can
pass data

• Two types of semantics:

– blocking: sending process waits for response

– non-blocking: sending process continues

Lect-05.41 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

IPC Styles

• Shared memory:

– Processes have some memory in common

– Must cooperate to avoid destroying/missing
messages

• Message passing:

– Processes send messages along a communication
channel---no common address space

Lect-05.42 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Shared Memory

• Shared memory on a bus:

CPU 1 CPU 2
memory

Lect-05.43 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Race Condition in Shared Memory

• Problem when two CPUs try to write the same
location:

– CPU 1 reads flag and sees 0

– CPU 2 reads flag and sees 0

– CPU 1 sets flag to one and writes location

– CPU 2 sets flag to one and overwrites location

Lect-05.44 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Atomic Test-and-Set

• Problem can be solved with an atomic test-
and-set:

– Single bus operation reads memory location, tests
it, writes it.

• ARM test-and-set provided by SWP (originally,
more modern chips use LDREX, STREX):

 ADR r0,SEMAPHORE

 LDR r1,#1

GETFLAG: SWP r1,r1,[r0]

 BNZ GETFLAG

Lect-05.45 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Critical Regions

• Critical region: section of code that cannot be
interrupted by another process

• Examples:

– Writing shared memory

– Accessing I/O device

Lect-05.46 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Semaphores

• Semaphore: OS primitive for controlling
access to critical regions

• Protocol:

– Get access to semaphore with P()

– Perform critical region operations

– Release semaphore with V()

Lect-05.47 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Message Passing

• Message passing on a network:

CPU 1 CPU 2

message message

message

Lect-05.48 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• Queues can be used to pass messages

• Operating system manages queues

freeRTOS.org Queues

xQueueHandle q1;

q1 = xQueueCreate(MAX_SIZE, sizeof(msg_record));

if (q1 == 0) /* error */

xQueueSend(q1,(void *)msg,(portTickType)0);

/* queue, message to send, final parameter controls

timeout */

if (xQueueReceive(q2,&(in_msg),0);

/* queue, message received, timeout */

Lect-05.49 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• Similar to a software interrupt.

• Changes flow of control but does not pass
parameters.

– May be typed to allow several types of signals.

– Unix ^c sends kill signal to process.

Signals

Lect-05.50 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• Fixed memory or register
used for interprocess
communication

• May be implemented
directly in hardware or by
RTOS

Mailbox
void post(message *msg) {

 P(mailbox.sem);

 copy(mailbox.data,msg);

 mailbox.flag = TRUE

 V(mailbox.sem);

}

bool pickup(message *msg) {

 bool pickup = FALSE;

 P(mailbox.sem);

 pickup = mailbox.flag;

 mailbox.flag = FALSE;

 copy(msg, mailbox.data);

 V(mailbox.sem);

 return(pickup);

}

Lect-05.51 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• fork() makes two copies of executing process

• Child process identifies itself and overlays new code

POSIX Process Creation

if (childid == 0) {

 /* must be child */

 execv(“mychild”,childargs);

 perror(“execv”);

 exit(1);

}

else { /* is the parent */

 parent_stuff();

 wait(&cstatus);

 exit(0);

}

Lect-05.52 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• Processes may run under different scheduling
policies

• _POSIX_PRIORITY_SCHEDULING resource
supports real-time scheduling

• SCHED_FIFO supports RMS

POSIX Real-Time Scheduling

int i, my_process_id;

struct sched_param my_sched_params;

...

i =

sched_setscheduler(my_process_id,SCHED_FIFO,

&sched_params);

Lect-05.53 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• Supports counting semaphores in
_POSIX_SEMAPHORES

• Supports shared memory

POSIX Interprocess Communication

i = sem_wait(my_semaphore); /* P */

/* do useful work */

i = sem_post(my_semaphore); /* V */

/* sem_trywait tests without blocking */

i = sem_trywait(my_semaphore);

Lect-05.54 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• Pipes directly
connect programs

• pipe() function
creates a pipe to
talk to a child
before the child is
created

POSIX Pipes

if (pipe(pipe_ends) < 0) {

 perror(“pipe”);

 break;

}

childid = fork();

if (childid == 0) {

 childargs[0] = pipe_ends[1];

 execv(“mychild”,childargs);

 perror(“execv”);

 exit(1);

}

else { ... }

Lect-05.55 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Memory Management Units

• Memory management unit (MMU)
translates addresses:

CPU
main

memory

memory
management

unit

logical
address

physical
address

Lect-05.56 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Memory Management Tasks

• Allows programs to move in physical memory
during execution

• Allows virtual memory:

– Memory images kept in secondary storage

– Images returned to main memory on demand
during execution

• Page fault: request for location not resident in
memory

Lect-05.57 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Address Translation

• Requires some sort of register/table to allow
arbitrary mappings of logical to physical
addresses

• Two basic schemes:

– segmented

– paged

• Segmentation and paging can be combined
(x86)

Lect-05.58 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Segments and Pages

memory

segment 1

segment 2

page 1

page 2

Lect-05.59 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Segment Address Translation

segment base address logical address

range
check

physical address

+

range
error

segment lower bound

segment upper bound

Lect-05.60 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Page Address Translation (cont.)

page offset

page offset

page i base

concatenate

Lect-05.61 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Page Table Organizations

flat tree

page descriptor

page
descriptor

Lect-05.62 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Caching Address Translations

• Large translation tables require main memory
access

• TLB: cache for address translation

– Typically small

Lect-05.63 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

ARM Memory Management

• Memory region types:

– Section: 1 Mbyte block

– Large page: 64 kbytes

– Small page: 4 kbytes

• An address is marked as section-mapped or
page-mapped

• Two-level translation scheme

Lect-05.64 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

ARM Address Translation

offset 1st index 2nd index

physical address

Translation table
base register

1st level table

descriptor

2nd level table

descriptor

concatenate

concatenate

Lect-05.65 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• Root file system is an essential component of
any Linux system and contains many critical
system components
– Applications

– Configuration files

– Shared libraries

– Data files

• Mounted after kernel

initialization completes

• Contains first app run

by initialization process

Linux Root File System

Lect-05.66 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

Linux Device Driver Types

Lect-05.67 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• Provide access to physical hardware resources

• Built-in or loaded at run-time (loadable modules)

• Can be multi-layered subsystems (USB, I2C, Ethernet)

Linux Device Driver Modularity

Lect-05.68 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

System Call API

• Example library
functions:
– fopen()

– fread()

– fwrite()

– fseek()

– fclose()

• Primary way applications
interact with the kernel

Lect-05.69 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• Traditional /dev devices
– Handles streaming data (i.e. audio/video)

– Efficient exchange of binary data and structures
rather than individual text strings

– Protection from simultaneous access

• Device drivers under sysfs
– Limited to simple single text value

– Easy access to device data via both shell scripts
and user space programs

• Weigh the tradeoffs to decide which solution
is appropriate for your own application

Traditional Device Drivers vs. sysfs

Lect-05.70 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

sysfs Device Driver Example

Lect-05.71 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU

• These slides are inspired in part by material
developed and copyright by:

– Marilyn Wolf (Georgia Tech)

– Fred Kuhns (Washington University in St. Louis)

– Steve Furber (University of Manchester)

– Ed Lee (UC-Berkeley)

Acknowledgments

