
CprE 488 – Embedded Systems Design 
 

Lecture 5 – Embedded Operating Systems 

Joseph Zambreno 

Electrical and Computer Engineering 

Iowa State University 

 

www.ece.iastate.edu/~zambreno 

rcl.ece.iastate.edu  

...the Linux philosophy is “laugh in the face of danger”. Oops. Wrong one. “Do it 
yourself”. That’s it. – Linux Torvalds 

http://www.ece.iastate.edu/~zambreno
http://rcl.ece.iastate.edu/
http://rcl.ece.iastate.edu/


Lect-05.2 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU 

• We have already run into some limitations of the 
standalone process model: 
– Single application, growing in complexity quickly 
– Lots of polling loops, deep nested ‘if’ statements 

• We could continue in this direction, but a modern 
Operating System (OS) provides streamlined 
mechanisms for: 
– Preemptive multitasking 
– Device drivers 
– Memory management 
– File systems 

 
 

• It would be insane to try to cover all the major issues 
involved in embedded OS in a single lecture 

Motivation 
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• Embedded Operating System features 
– Processes and scheduling 

• Context switching 

• Scheduler policies 

• Real-Time Operating Systems (RTOS) 

– Atomic operations 

– Inter-processes communication 

– Virtual memory 

– Examples along the way: 
• Linux, POSIX, freeRTOS.org 

• ARM architecture support 

 

• Reading: Wolf chapter 6, 3.5 

This Week’s Topic 
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Reactive Systems 

• Respond to external events: 
– Engine controller 

– Seat belt monitor 

• Requires real-time response: 
– System architecture 

– Program implementation 

• May require a chain reaction among multiple 
processors 
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Tasks and Processes 

• A task is a functional 
description of a 
connected set of 
operations 

• Task can also mean a 
collection of processes 

• A process is a unique 
execution of a program 

– Several copies of a 
program may run 
simultaneously or at 
different times 

• A process has its own 
state: 

– registers 

– memory 

• The operating system 
manages processes 
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• A process can be in one of three states: 

– executing on the CPU 

– ready to run 

– waiting for data 

 

Process State 

executing 

ready waiting 

gets data 
and CPU 

needs 
data 

gets data 

needs data 

preempted 
gets 
CPU 
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Embedded vs. General-Purpose Scheduling 

• Workstations try to avoid starving processes 
of CPU access 

– Fairness == access to CPU 

• Embedded systems must meet deadlines 

– Low-priority processes may not run for a long 
time 
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• Timer interrupt gives 
CPU to kernel 

– Time quantum is 
smallest increment of 
CPU scheduling time 

• Kernel decides what 
task runs next 

• Kernel performs 
context switch to new 
context 

 

Preemptive Scheduling 
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Context Switching 

• Set of registers that define a process’s state is 
its context 

– Stored in a record 

• Context switch moves the CPU from one 
process’s context to another 

• Context switching code is usually assembly 
code 

– Restoring context is particularly tricky 
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freeRTOS.org Context Switch 
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freeRTOS.org Timer Handler 

void vPreemptiveTick( void ) {  

 /* Save the context of the current task. */  

 portSAVE_CONTEXT();  

 /* Increment the tick count - this may wake a task. */  

 vTaskIncrementTick();  

 /* Find the highest priority task that is ready to run. */  

 vTaskSwitchContext();  

 /* End the interrupt in the AIC. */  

 AT91C_BASE_AIC->AIC_EOICR = AT91C_BASE_PITC->PITC_PIVR;  

 portRESTORE_CONTEXT();  

} 
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ARM Context Switch 

; Dump user registers above R13. 

; Pick up the user status 

; and dump with return address below. 

; Load next process info pointer. 

; If it is zero, it is invalid 

; Pick up status and return address. 

; Restore the status. 

; Get the rest of the registers 

; and return and restore CPSR. 

; Insert "no next process code" here. 

STM     sp, {R0-lr}^ 

MRS     R0, SPSR   

STMDB   sp, {R0, lr}   

LDR     sp, [R12], #4  

CMP     sp, #0  

LDMDBNE sp, {R0, lr}  

MSRNE   SPSR_cxsf, R0 

LDMNE   sp, {R0-lr}^ 

NOP 

SUBSNE pc, lr, #4 

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

User mode

spsr

r13 (sp)

r14 (lr)

IRQ FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr spsr

r13 (sp)

r14 (lr)

Undef

spsr

r13 (sp)

r14 (lr)

Abort

spsr

r13 (sp)

r14 (lr)

SVC

Current mode Banked out registers

ARM has 37 registers, all 32-bits 
long

A subset of these registers is accessible in 
each mode
Note: System mode uses the User mode 
register set.
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Real-Time Systems 

• What is a real-time system? 

• Which of the following is real-time? 
– A program that processes 100 video frames per 

second? 

– A program that that process 1 video frame per 10 
seconds? 

 

 

• A better name 
– “Get things done on time” Systems 

• They are about getting things done on time, not 
getting things done fast 
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Real-Time Systems: Key Terms/Concepts 

• Task  

– Cost: time for processor to complete task without 
interruptions 

– Release time: when task is ready to be run 

– Deadline: time by which task needs to completed 

– Period: time between release times 

• Task-set schedule: order in which tasks are 
allocated the CPU 

• Scheduling policy (algorithm): means by 
which (i.e. rules followed) to create a task-set 
schedule 
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Scheduling: Period vs Aperiodic 

• Periodic process: executes on (almost) every 
period 

• Aperiodic process: executes on demand 

• Analyzing aperiodic process sets is harder---
must consider worst-case combinations of 
process activations 
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Timing Requirements on Processes 

• Period: interval between process activations 

• Initiation interval: reciprocal of period 

• Initiation time: time at which process 
becomes ready 

• Deadline: time at which process must finish 
 

• What happens if a process doesn’t finish by 
its deadline? 

– Hard deadline: system fails if missed 

– Soft deadline: user may notice, but system 
doesn’t necessarily fail 
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Priority-driven Scheduling 

• Each process has a priority 

• CPU goes to highest-priority process that is 
ready 

• Priorities determine scheduling policy: 

– Fixed (Static) priority 

– Time-varying (Dynamic) priorities 
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Priority-driven Scheduling Example 

• Rules: 

– Each process has a fixed priority (1 highest) 

– Highest-priority ready process gets CPU 

– Process will not self stop (i.e. block) until done 

– Pre-emptive scheduling 

• Processes 

– P1: priority 1, execution time 10, release time 15 

– P2: priority 2, execution time 30, release time 0 

– P3: priority 3, execution time 20, release time 18 
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Priority-driven Scheduling Example (cont.) 

time 

P2 ready t=0 P1 ready t=15 

P3 ready t=18 

0 30 10 20 60 40 50 

P2 P2 P1 P3 

P1: priority 1, execution time 10, release time 15 

P2: priority 2, execution time 30, release time 0 

P3: priority 3, execution time 20, release time 18 
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The Scheduling Problem 

• Can we meet all deadlines? 

– Must be able to meet deadlines in all cases 

• How much CPU horsepower do we need to 
meet our deadlines? 
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CPU Utilization 

• T1: PPM update 

– Cost = 10 ms 

– Deadline = 25 ms 

– Period = 25 ms 

• What is the CPU utilization of T1? 
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Scheduling Example (with preemption) 

• T1: PPM update 
– Cost = 10 ms 
– Deadline = 25 ms 
– Period = 25 ms 

• T2: Video processing 
– Cost = 20 ms 
– Deadline = 50 ms 
– Period = 50 ms 

 
• What rules to follow for scheduling 

– Let’s say that the more often a task needs to run, the 
higher the priority (allow preemption) 

– Draw out schedule and see if we miss a deadline 
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Scheduling Example (no preemption) 

• T1: PPM update 
– Cost = 10 ms 
– Deadline = 25 ms 
– Period = 25 ms 

• T2: Video processing 
– Cost = 20 ms 
– Deadline = 50 ms 
– Period = 50 ms 

 
• What rules to follow for scheduling 

– Let’s say that the more often a Task needs to run, the 
higher the priority (now allow NO preemption) 

– Is there a release pattern that can cause a task to 
miss a deadline? 
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Scheduling Metrics 

• How do we evaluate a scheduling policy: 

– Ability to satisfy all deadlines (Feasibility) 

– CPU utilization---percentage of time devoted to 
useful work 

– Scheduling overhead---time required to make 
scheduling decision 
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Scheduling Metrics: Feasibility 

• For previous preemption example 

– How long do we have to draw out the schedule 
before we know we will never miss a deadline? 

– What if we had 3 tasks with period 3ms, 4ms, and 
7ms? 

– For a general task set, for how do we have to 
draw out the schedule? 
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Scheduling Metrics: Feasibility 

• For previous preemption example 
– How long do we have to draw out the schedule 

before we know we will never miss a deadline? 

– What if we had 3 tasks with period 3ms, 4ms, and 
7ms?  Answer: 84 ms 

– For a general task set, how do we have to draw out 
the schedule? Answer: Lowest common multiple of 
Task periods (a task set’s Hyper Period).  This is the 
time it takes before all Tasks release times 
synchronize after time = 0 

 

• Is there a better way to determine is feasible 
(i.e. schedule using a given policy)?  Yes! RMA 

 



Lect-05.27 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU 

Rate Monotonic Scheduling 

• RMS (Liu and Layland): widely-used, 
analyzable scheduling policy 

• Analysis is known as Rate Monotonic Analysis 
(RMA) 

– All process run on single CPU 

– Zero context switch time 

– No data dependencies between processes 

– Process execution time is constant 

– Deadline is at end of period 

– Highest-priority ready process runs 
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Process Parameters 

• Ti is computation time of process i; ti is 
period of process i. 

period ti 

Pi 

 computation time Ti 
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Rate-Monotonic Analysis 

• Response time: time required to finish 
process 

• Critical instant: scheduling state that gives 
worst response time 

• Critical instant occurs when all higher-priority 
processes are ready to execute 
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Critical Instant 

P4 

P3 

P2 

P1 

critical 
instant 

P1 P1 P1 P1 

P2 P2 

P3 

interfering processes 
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RMS Priorities 

• Optimal (fixed) priority assignment: 

– Shortest-period process gets highest priority 

– Priority inversely proportional to period 

– Break ties arbitrarily 

• No fixed-priority scheme does better 
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RMS CPU Utilization 

• Utilization for n processes is 

–S i Ti / ti 

• As number of tasks approaches infinity, 
maximum utilization approaches 69% 

– If the Task set Utilization <= 69%, then RMS is 
guaranteed to meet all deadlines 

– If  Utilization > 69%, then must draw schedule 
for the Lowest Common Multiple (LCM) of the 
Task set periods. 

– Positive: Quick way to determine Feasibility 

– Negative: Gives up about 30% of CPU Utilization 
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Earliest-Deadline-First Scheduling 

• EDF: dynamic priority scheduling scheme 

• Process closest to its deadline has highest 
priority 

• Requires recalculating processes at every 
timer interrupt 

 

 

• EDF can use 100% of CPU 

– But part of that 100% will be used for 
computing/updating Task priorities 
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Modified Scheduling Example 

• T1: PPM update 

– Cost = 7 ms 

– Deadline = 12 ms 

– Period = 12 ms 

• T2: Video processing 

– Cost 20.5 ms 

– Deadline 50 ms 

– Period = 50 ms 

 

• Lets try RMS first 
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EDF Implementation 

• On each timer interrupt: 

– Compute time to deadline 

– Choose process closest to deadline 

• Generally considered too expensive to use in 
practice 
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Scheduling Problems 

• What if your set of processes is 
unschedulable? 

– Change deadlines in requirements 

– Reduce execution times of processes 

– Get a faster CPU 

• Note for RMS: If periods of task sets are 
“Harmonic” then RMS can handle 100% 
utilization 
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Fixed Priority Concern: Priority Inversion 

• Priority inversion: low-priority process keeps 
high-priority process from running 

• Improper use of system resources can cause 
scheduling problems: 

– Low-priority process grabs I/O device 

– High-priority device needs I/O device, but can’t 
get it until low-priority process is done 

• Can cause deadlock 
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Solving Priority Inversion 

• Priority Inheritance: Have process inherit the 
priority of the highest process being blocked 

– Can still have deadlock 

• Priority Ceilings: Process can only enter a 
critical section of code, if no other higher 
priority process owns a resource that it may 
need. 

– Solves deadlock issue 
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Context-Switching Time 

• Non-zero context switch time can push limits 
of a tight schedule 

• Hard to calculate effects---depends on order 
of context switches 

• In practice, OS context switch overhead is 
small (hundreds of clock cycles) relative to 
many common task periods (ms – ms) 
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Interprocess Communication 

• Interprocess communication (IPC): OS 
provides mechanisms so that processes can 
pass data 

• Two types of semantics: 

– blocking: sending process waits for response 

– non-blocking: sending process continues 
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IPC Styles 

• Shared memory: 

– Processes have some memory in common 

– Must cooperate to avoid destroying/missing 
messages 

• Message passing: 

– Processes send messages along a communication 
channel---no common address space 
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Shared Memory 

• Shared memory on a bus: 

CPU 1 CPU 2 
memory 
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Race Condition in Shared Memory 

• Problem when two CPUs try to write the same 
location: 

– CPU 1 reads flag and sees 0 

– CPU 2 reads flag and sees 0 

– CPU 1 sets flag to one and writes location 

– CPU 2 sets flag to one and overwrites location 
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Atomic Test-and-Set 

• Problem can be solved with an atomic test-
and-set: 

– Single bus operation reads memory location, tests 
it, writes it. 

• ARM test-and-set provided by SWP (originally, 
more modern chips use LDREX, STREX): 

 
      ADR r0,SEMAPHORE 

         LDR r1,#1 

GETFLAG: SWP r1,r1,[r0] 

         BNZ GETFLAG 
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Critical Regions 

• Critical region: section of code that cannot be 
interrupted by another process 

• Examples: 

– Writing shared memory 

– Accessing I/O device 
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Semaphores 

• Semaphore: OS primitive for controlling 
access to critical regions 

• Protocol: 

– Get access to semaphore with P() 

– Perform critical region operations 

– Release semaphore with V() 
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Message Passing 

• Message passing on a network: 

CPU 1 CPU 2 

message message 

message 
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• Queues can be used to pass messages 

• Operating system manages queues 

 

freeRTOS.org Queues 

xQueueHandle q1;  

q1 = xQueueCreate( MAX_SIZE, sizeof(msg_record)); 

if (q1 == 0) /* error */  

xQueueSend(q1,(void *)msg,(portTickType)0);  

/* queue, message to send, final parameter controls 

timeout */  

if (xQueueReceive(q2,&(in_msg),0);  

/* queue, message received, timeout */  
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• Similar to a software interrupt. 

• Changes flow of control but does not pass 
parameters. 

– May be typed to allow several types of signals. 

– Unix ^c sends kill signal to process. 

 

Signals 
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• Fixed memory or register 
used for interprocess 
communication 

• May be implemented 
directly in hardware or by 
RTOS 

 

Mailbox 
void post(message *msg) {  

   P(mailbox.sem);  

   copy(mailbox.data,msg);  

   mailbox.flag = TRUE 

   V(mailbox.sem);  

} 

bool pickup(message *msg) {  

   bool pickup = FALSE;   

   P(mailbox.sem);   

   pickup = mailbox.flag; 

  

   mailbox.flag = FALSE;    

   copy(msg, mailbox.data); 

   V(mailbox.sem);  

   return(pickup); 

} 
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• fork() makes two copies of executing process 

• Child process identifies itself and overlays new code 

 

POSIX Process Creation 

if (childid == 0) {  

   /* must be child */  

   execv(“mychild”,childargs);  

   perror(“execv”);  

   exit(1);  

} 

else { /* is the parent */  

   parent_stuff();  

   wait(&cstatus);  

   exit(0);  

}  
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• Processes may run under different scheduling 
policies 

• _POSIX_PRIORITY_SCHEDULING resource 
supports real-time scheduling 

• SCHED_FIFO supports RMS 
 

POSIX Real-Time Scheduling 

int i, my_process_id;  

struct sched_param my_sched_params;  

...  

i = 

sched_setscheduler(my_process_id,SCHED_FIFO,

&sched_params);  
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• Supports counting semaphores in 
_POSIX_SEMAPHORES 

• Supports shared memory 

 

POSIX Interprocess Communication 

i = sem_wait(my_semaphore); /* P */  

/* do useful work */  

i = sem_post(my_semaphore); /* V */  

 

/* sem_trywait tests without blocking */  

i = sem_trywait(my_semaphore);  
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• Pipes directly 
connect programs 

• pipe() function 
creates a pipe to 
talk to a child 
before the child is 
created 

 

POSIX Pipes 

if (pipe(pipe_ends) < 0) {  

 perror(“pipe”);  

 break;  

} 

childid = fork();  

if (childid == 0) {   

 childargs[0] = pipe_ends[1];  

 execv(“mychild”,childargs);  

 perror(“execv”);  

 exit(1);  

} 

else { ... } 
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Memory Management Units 

• Memory management unit (MMU) 
translates addresses: 

CPU 
main 

memory 

memory 
management 

unit 

logical 
address 

physical 
address 



Lect-05.56 CprE 488 (Embedded OS) Zambreno, Spring 2017 © ISU 

Memory Management Tasks 

• Allows programs to move in physical memory 
during execution 

• Allows virtual memory: 

– Memory images kept in secondary storage 

– Images returned to main memory on demand 
during execution 

• Page fault: request for location not resident in 
memory 
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Address Translation 

• Requires some sort of register/table to allow 
arbitrary mappings of logical to physical 
addresses 

• Two basic schemes: 

– segmented 

– paged 

• Segmentation and paging can be combined 
(x86) 
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Segments and Pages 

memory 

segment 1 

segment 2 

page 1 

page 2 
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Segment Address Translation 

segment base address logical address 

range 
check 

physical address 

+ 

range 
error 

segment lower bound 

segment upper bound 
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Page Address Translation (cont.) 

page offset 

page offset 

page i base 

concatenate 
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Page Table Organizations 

flat tree 

page descriptor 

page 
descriptor 
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Caching Address Translations 

• Large translation tables require main memory 
access 

• TLB: cache for address translation 

– Typically small 
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ARM Memory Management 

• Memory region types: 

– Section: 1 Mbyte block 

– Large page: 64 kbytes 

– Small page: 4 kbytes 

• An address is marked as section-mapped or 
page-mapped 

• Two-level translation scheme 
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ARM Address Translation 

offset 1st index 2nd index 

physical address 

Translation table 
base register 

1st level table 

descriptor 

2nd level table 

descriptor 

concatenate 

concatenate 
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• Root file system is an essential component of 
any Linux system and contains many critical 
system components 
– Applications 

– Configuration files 

– Shared libraries 

– Data files 

• Mounted after kernel 

initialization completes 

• Contains first app run 

by initialization process 

Linux Root File System 
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Linux Device Driver Types 
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• Provide access to physical hardware resources 

• Built-in or loaded at run-time (loadable modules) 

• Can be multi-layered subsystems (USB, I2C, Ethernet)  

Linux Device Driver Modularity 
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System Call API 

• Example library 
functions: 
– fopen() 

– fread() 

– fwrite() 

– fseek() 

– fclose() 

• Primary way applications 
interact with the kernel 
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• Traditional /dev devices 
– Handles streaming data (i.e. audio/video) 

– Efficient exchange of binary data and structures 
rather than individual text strings 

– Protection from simultaneous access 

• Device drivers under sysfs 
– Limited to simple single text value  

– Easy access to device data via both shell scripts 
and user space programs 

 

• Weigh the tradeoffs to decide which solution 
is appropriate for your own application 

Traditional Device Drivers vs. sysfs 
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sysfs Device Driver Example 
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• These slides are inspired in part by material 
developed and copyright by: 

– Marilyn Wolf (Georgia Tech) 

– Fred Kuhns (Washington University in St. Louis) 

– Steve Furber (University of Manchester) 

– Ed Lee (UC-Berkeley) 
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