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...the Linux philosophy is "laugh in the face of danger’. Oops. Wrong one. "Do it

yourself”. Thats it. —Linux Torvalds
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« We have already run into some limitations of the
standalone process model:

— Single application, growing in complexity quickly
— Lots of polling loops, deep nested ‘if’ statements
« We could continue in this direction, but a modern

Operating System (OS) provides streamlmed
mechanisms for: - = N

— Preemptive multitasking Yot

— Device drivers M
— Memory management Kernel

— File systems B e e

\A/ CPU Memory Devices
4 A

N

It would be insane to try to cover all the major issues
involved in embedded OS in a single lecture
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This Week's Topic

« Embedded Operating System features

— Processes and scheduling
 Context switching
 Scheduler policies
« Real-Time Operating Systems (RTOS)

— Atomic operations
— Inter-processes communication
— Virtual memory

— Examples along the way:
« Linux, POSIX, freeRTOS.org
* ARM architecture support

« Reading: Wolf chapter 6, 3.5
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Reactive Systems

« Respond to external events:
— Engine controller
— Seat belt monitor

« Requires real-time response:
— System architecture
— Program implementation

« May require a chain reaction among multiple
Processors
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Tasks and Processes

« A task is a functional
description of a
connected set of
operations

 Task can also mean a
collection of processes
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« A process is a unique
execution of a program

— Several copies of a
program may run
simultaneously or at
different times

* A process has its own
state:

— registers

— memory

* The operating system
manages processes
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Process State

A process can be in one of three states:
— executing on the CPU
— ready to run

— waiting for data executing 1\ gets data
?:I(itlj preemI:)tecllq\eedsan<J
/ data
N getsdata \
ready ‘ | waiting }
“  needs data -
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Embedded vs. General-Purpose Scheduling

« Workstations try to avoid starving processes
of CPU access

— Fairness == access to CPU

« Embedded systems must meet deadlines

— Low-priority processes may not run for a long
time
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Preemptive Scheduling

* Timer interrupt gives
CPU to kernel

— Time quantum is
smallest increment of
CPU scheduling time

* Kernel decides what
task runs next

« Kernel performs
context switch to new
context
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Timer

Task 1

Task 2
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Context Switching

 Set of registers that define a process’s state is
Its context

— Stored in a record

« Context switch moves the CPU from one
process'’s context to another

 Context switching code is usually assembly
code

— Restoring context is particularly tricky
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freeRTOS.org Timer Handler

void vPreemptiveTick( void ) {
/* Save the context of the current task. */
POrtSAVE CONTEXT () ;
/* Increment the tick count - this may wake a task. */
vTaskIncrementTick () ;
/* Find the highest priority task that is ready to run. */
vTaskSwitchContext () ;
/* End the interrupt in the AIC. */
AT91C_BASE_AIC->AIC_EOICR = AT91C_BASE_PITC—>PITC_PIVR;
POrtRESTORE CONTEXT () ;
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ARM Context Switch

User mode Undef Abort SVC
: r0 ; :
£l P ARM has 37 registers, all 32-bits
2 P long
r3 HH :
rd A subset of these registers is accessible in
x5 i each mode :

r6

= Note: System mode uses the User mode
r

register set.

Eeil e P

. current mode-l e Banked ot regsbars:+rrerrererersrsrsrsrsred
STM sp, {RO-1lr}* ; Dump user registers above R13.
MRS RO, SPSR ; Pick up the user status
STMDB sp, {RO, 1r} ; and dump with return address below.
LDR sp, [R12], #4 ; Load next process info pointer.
CMP sp, #0 ; If it is zero, it is invalid
LDMDBNE sp, {RO, 1r} ; Pick up status and return address.
MSRNE SPSR cxsf, RO ; Restore the status.
LDMNE sp, {RO-1lr}* ; Get the rest of the registers
NOP ; and return and restore CPSR.
SUBSNE pc, lr, #4 ; Insert '"no next process code" here.
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Real-Time Systems

« What is a real-time system?

« Which of the following is real-time?

— A program that processes 100 video frames per
second?

— A program that that process 1 video frame per 10
seconds?

A better name
— “Get things done on time” Systems

« They are about getting things done on time, not
getting things done fast
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Real-Time Systems: Key Terms/Concepts
» Task

— Cost: time for processor to complete task without
interruptions

— Release time: when task is ready to be run
— Deadline: time by which task needs to completed
— Period: time between release times

« Task-set schedule: order in which tasks are
allocated the CPU

« Scheduling policy (algorithm): means by
which (i.e. rules followed) to create a task-set
schedule
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Scheduling: Period vs Aperiodic

» Periodic process: executes on (almost) every
period

 Aperiodic process: executes on demand

 Analyzing aperiodic process sets is harder---
must consider worst-case combinations of
process activations
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Timing Requirements on Processes

 Period: interval between process activations
- Initiation interval: reciprocal of period

» Initiation time: time at which process
becomes ready

« Deadline: time at which process must finish

« What happens if a process doesn’t finish by
its deadline?
— Hard deadline: system fails if missed

— Soft deadline: user may notice, but system
doesn’t necessarily fail

Zambreno, Spring 2017 © ISU CprE 488 (Embedded 0OS) Lect-05.16



Priority-driven Scheduling

« Each process has a priority

» CPU goes to highest-priority process that is
ready

* Priorities determine scheduling policy:
— Fixed (Static) priority
— Time-varying (Dynamic) priorities
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Priority-driven Scheduling Example

» Rules:
— Each process has a fixed priority (1 highest)
— Highest-priority ready process gets CPU
— Process will not self stop (i.e. block) until done
— Pre-emptive scheduling

* Processes
— P1: priority 1, execution time 10, release time 15

— P2: priority 2, execution time 30, release time 0
— P3: priority 3, execution time 20, release time 18
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Priority-driven Scheduling Example (cont.)

P1: priority 1, execution time 10, release time 15

P2: priority 2, execution time 30, release time 0

P3: priority 3, execution time 20, release time 18
P3 ready t=18

P2 ready t=0 P1 ready t=15

J JVP
om | e

0 10 20 30 40 50 60
time

v
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The Scheduling Problem

 Can we meet all deadlines?
— Must be able to meet deadlines in all cases

« How much CPU horsepower do we need to
meet our deadlines?
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CPU Utilization

« T1: PPM update

— Cost = 10 ms
— Deadline = 25 ms
— Period = 25 ms

 What is the CPU utilization of T1?

Zambreno, Spring 2017 © ISU CprE 488 (Embedded 0OS) Lect-05.21



Scheduling Example (with preemption)

« T1: PPM update
— Cost = 10 ms
— Deadline = 25 ms
— Period = 25 ms

« T2: Video processing
— Cost = 20 ms
— Deadline = 50 ms
— Period = 50 ms

« What rules to follow for scheduling

— Let's say that the more often a task needs to run, the
higher the priority (allow preemption)

— Draw out schedule and see if we miss a deadline
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Scheduling Example (no preemption)

. T1: PPM update

— Cost = 10 ms
— Deadline = 25 ms
— Period = 25 ms

« T2: Video processing
— Cost = 20 ms
— Deadline = 50 ms
— Period = 50 ms

« What rules to follow for scheduling

— Let’s say that the more often a Task needs to run, the
higher the priority (now allow NO preemption)

— Is there a release pattern that can cause a task to
miss a deadline?
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Scheduling Metrics

« How do we evaluate a scheduling policy:
— Ability to satisfy all deadlines (Feasibility)

— CPU utilization---percentage of time devoted to
useful work

— Scheduling overhead---time required to make
scheduling decision
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Scheduling Metrics: Feasibility

 For previous preemption example

— How long do we have to draw out the schedule
before we know we will never miss a deadline?

— What if we had 3 tasks with period 3ms, 4ms, and
/ms?

— For a general task set, for how do we have to
draw out the schedule?
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Scheduling Metrics: Feasibility

 For previous preemption example

— How long do we have to draw out the schedule
before we know we will never miss a deadline?

— What if we had 3 tasks with period 3ms, 4ms, and
/ms? Answer: 84 ms

— For a general task set, how do we have to draw out
the schedule? Answer: Lowest common multiple of
Task periods (a task set's Hyper Period). This is the
time it takes before all Tasks release times
synchronize after time = 0

« Is there a better way to determine is feasible
(i.e. schedule using a given policy)? Yes! RMA
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Rate Monotonic Scheduling

« RMS (Liu and Layland): widely-used,
analyzable scheduling policy

 Analysis is known as Rate Monotonic Analysis
(RMA)
— All process run on single CPU
— Zero context switch time
— No data dependencies between processes
— Process execution time is constant
— Deadline is at end of period
— Highest-priority ready process runs
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Process Parameters

» T. is computation time of process i; T, is
period of process i.

period T,

computation time T,
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Rate-Monotonic Analysis

« Response time: time required to finish
process

» Critical instant: scheduling state that gives
worst response time

» Critical instant occurs when all higher-priority
processes are ready to execute
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Critical Instant

interfering processes

v

v

critical
instant

v
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RMS Priorities

« Optimal (fixed) priority assignment:
— Shortest-period process gets highest priority
— Priority inversely proportional to period
— Break ties arbitrarily

 No fixed-priority scheme does better
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RMS CPU Utilization

« Utilization for n processes is
-2 i/
« As number of tasks approaches infinity,

maximum utilization approaches 69%

— If the Task set Utilization <= 69%, then RMS is
guaranteed to meet all deadlines

— If Utilization > 69%, then must draw schedule
for the Lowest Common Multiple (LCM) of the
Task set periods.

— Positive: Quick way to determine Feasibility
— Negative: Gives up about 30% of CPU Utilization
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Earliest-Deadline-First Scheduling

- EDF: dynamic priority scheduling scheme

* Process closest to its deadline has highest
priority

« Requires recalculating processes at every
timer interrupt

« EDF can use 100% of CPU

— But part of that 100% will be used for
computing/updating Task priorities

Lect-05.33
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Modified Scheduling Example

« T1: PPM update
— Cost = 7 ms
— Deadline = 12 ms
— Period = 12 ms

« T2: Video processing
— Cost 20.5 ms
— Deadline 50 ms
— Period = 50 ms

 Lets try RMS first
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EDF Implementation

* On each timer interrupt:
— Compute time to deadline
— Choose process closest to deadline

» Generally considered too expensive to use in
practice
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Scheduling Problems

« What if your set of processes is
unschedulable?

— Change deadlines in requirements
— Reduce execution times of processes
— Get a faster CPU

« Note for RMS: If periods of task sets are
“"Harmonic” then RMS can handle 100%
utilization
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Fixed Priority Concern: Priority Inversion

* Priority inversion: low-priority process keeps
high-priority process from running
« Improper use of system resources can cause
scheduling problems:
— Low-priority process grabs I/O device
— High-priority device needs I/O device, but can't
get it until low-priority process is done

* Can cause deadlock
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Solving Priority Inversion

* Priority Inheritance: Have process inherit the
priority of the highest process being blocked

— Can still have deadlock
» Priority Ceilings: Process can only enter a
critical section of code, if no other higher

priority process owns a resource that it may
need.

— Solves deadlock issue
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Context-Switching Time

* Non-zero context switch time can push limits
of a tight schedule

« Hard to calculate effects---depends on order
of context switches

 In practice, OS context switch overhead is
small (hundreds of clock cycles) relative to
many common task periods (ms — us)
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Interprocess Communication

 Interprocess communication (IPC): OS
provides mechanisms so that processes can
pass data

« Two types of semantics:
— blocking: sending process waits for response
— non-blocking: sending process continues
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IPC Styles

» Shared memory:
— Processes have some memory in common

— Must cooperate to avoid destroying/missing
messages

» Message passing:

— Processes send messages along a communication
channel---no common address space
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Shared Memory

« Shared memory on a bus:
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Race Condition in Shared Memory

» Problem when two CPUs try to write the same
location:
— CPU 1 reads flag and sees 0
— CPU 2 reads flag and sees 0
— CPU 1 sets flag to one and writes location
— CPU 2 sets flag to one and overwrites location
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Atomic Test-and-Set

« Problem can be solved with an atomic test-
and-set:
— Single bus operation reads memory location, tests
It, writes It.
« ARM test-and-set provided by SWP (originally,
more modern chips use LDREX, STREX):

ADR r0, SEMAPHORE
IDR rl,#1

GETFLAG: SWP rl,rl, [xO]
BNZ GETFLAG

Zambreno, Spring 2017 © ISU CprE 488 (Embedded 0OS) Lect-05.44



Critical Regions

« Critical region: section of code that cannot be
interrupted by another process

« Examples:
— Writing shared memory
— Accessing I/O device
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« Semaphore: OS primitive for controlling
access to critical regions

* Protocol:
— Get access to semaphore with P()

— Perform critical region operations
— Release semaphore with V()
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Message Passing

» Message passing on a network:

MeSSsage message

message
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freeRTOS.org Queues

* Queues can be used to pass messages
» Operating system manages queues

xQueueHandle ql;

ql xQueueCreate( MAX SIZE, sizeof (msg record));
if (g1 == 0) /* error */

xQueueSend(gql, (void *)msg, (portTickType)O) ;

/* queue, message to send, final parameter controls
timeout */

if (xQueueReceive(g2,&(in msg),0);

/* queue, message received, timeout */
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 Similar to a software interrupt.
« Changes flow of control but does not pass
parameters.

— May be typed to allow several types of signals.
— Unix ~c sends kill signal to process.

someClass

<<signal>>
aSig <<send>>

sigbehavior()

p: integer
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Fixed memory or register
used for interprocess
communication

May be implemented
directly in hardware or by
RTOS }

void post (message *msg) {

P (mailbox.sem) ;

copy (mailbox.data,msqg) ;
mailbox.flag = TRUE

V (mailbox.sem) ;

bool pickup (message *msg) {

bool pickup = FALSE;
P (mailbox.sem) ;
pickup = mailbox.flag;

mailbox.flag = FALSE;
copy (msg, mailbox.data);
V(mailbox.sem) ;

return (pickup) ;
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POSIX Process Creation

« fork() makes two copies of executing process
 Child process identifies itself and overlays new code

if (childid == 0) {
/* must be child */
execv (“"'mychild” ,childargs) ;
perror (“execv”) ;
exit(1l);

}

else { /* is the parent */
parent stuff();
wait (&cstatus) ;
exit (0) ;

CprE 488 (Embedded 0OS)
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POSIX Real-Time Scheduling

* Processes may run under different scheduling
policies

« POSIX_PRIORITY_SCHEDULING resource
supports real-time scheduling

« SCHED_FIFO supports RMS

int i1, my process id;
struct sched param my sched params;

i =
sched setscheduler (my process id,SCHED FIFO,
&sched params) ;
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POSIX Interprocess Communication

« Supports counting semaphores in
_POSIX_SEMAPHORES

« Supports shared memory

i = sem wait(my semaphore); /* P */
/* do useful work */

i = sem post(my semaphore); /* V */

/* sem trywait tests without blocking */

i = sem trywait (my semaphore);

Zambreno, Spring 2017 © ISU CprE 488 (Embedded 0OS)

Lect-05.53



POSIX Pipes

Pipes directly
connect programs
pipe() function
creates a pipe to
talk to a child
before the child is
created

if (pipe(pipe ends) < 0) {
perror (“pipe”) ;
break;

}

childid = fork();

if (childid == 0) {
childargs[0] = pipe ends[1];
execv ("mychild”,childargs) ;
perror (“execv”) ;
exit(1l);

}

else { ... }
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Memory Management Units

« Memory management unit (MMU)
translates addresses:

logical
address

physical
address

CPU
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Memory Management Tasks

» Allows programs to move in physical memory
during execution

* Allows virtual memory:

— Memory images kept in secondary storage

— Images returned to main memory on demand
during execution

 Page fault: request for location not resident in
memory
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Address Translation

« Requires some sort of register/table to allow
arbitrary mappings of logical to physical
addresses

» Two basic schemes:

— segmented
— paged

» Segmentation and paging can be combined

(x86)
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Segments and Pages

- OO OO
page 1

page 2
segment 1

segment 2
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Segment Address Translation

range
error

segment lower bound
segment upper bound

Zambreno, Spring 2017 © ISU CprE 488 (Embedded 0OS) Lect-05.59



Page Address Translation (cont.)

e e

g4 Concatenate
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Page Table Organizations

page

descriptor
page descriptor

/

flat tree
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Caching Address Translations

 Large translation tables require main memory
access

« TLB: cache for address translation
— Typically small
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ARM Memory Management

« Memory region types:
— Section: 1 Mbyte block
— Large page: 64 kbytes
— Small page: 4 kbytes
« An address is marked as section-mapped or
page-mapped
« Two-level translation scheme
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ARM Address Translation

descriptor

1st level table

descriptor
2nd level table

concatenate

concatenate
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Linux Root File System

 Root file system is an essential component of
any Linux system and contains many critical

system components
— Applications

— Configuration files

— Shared libraries

— Data files

* Mounted after kernel
initialization completes
 Contains first app run
by initialization process

Folders common to Desktop Linux:

/dev — System devices (Chapter 3.1 topic)

/root - Storage for super user files
Each user gets their own folder (e.g. /home/user)
Similar to “My Documents” in Windows
“root” user is different, that user’s folder is at /root

/mnt - Mount point for other file systems
Linux only allows one root file system but other
disks can be added by mounting them to a
directory in the root file system
Similar to mapping a drive under Windows

/lib - System libraries
Location of system shared object libraries
Similar to Windows “C:\Windows\System”

Isys and /proc - Virtual file systems location
Exposes kernel parameters (kobjects) as files
Similar to Windows Registry

/usr - Storage for user binaries
Similar to “Program Files” in Windows
Linux system programs are stored in here
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Linux Device Driver Types

4 B
Applications

Kernel

»

Network Driver

Character Driver

CPU Memory Devices

T

Stream Random Packet
Oriented ) Access Oriented )

‘(.l :
I
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Linux Device Driver Modularity

* Provide access to physical hardware resources
 Built-in or loaded at run-time (loadable modules)
« Can be multi-layered subsystems (USB, I2C, Ethernet)

Linux Kernel
Drivers

Hardware
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System Call API

4 User Application )  Primary way applications
int main(..){ interact with the kernel
fd = fopen(..); Standard C
fread(fd,..); Library Calll
}\_/— e \/
\ _/ Shared Object Libraries
(i.e. libc.so)
@ )
_ System Call API Kernel
« Example library -
functions: Drivers
— fopen|()
- fread() Butt LED
_ fwrite() utton Physical SD Card
_ fseek () Devices
— fclose()
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Traditional Device Drivers vs. sysfs

« Traditional /dev devices
— Handles streaming data (i.e. audio/video)

— Efficient exchange of binary data and structures
rather than individual text strings

— Protection from simultaneous access
« Device drivers under sysfs

— Limited to simple single text value

— Easy access to device data via both shell scripts
and user space programs

« Weigh the tradeoffs to decide which solution
iS appropriate for your own application
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sysfs Device Driver Example

rollbeose 1 1 el Vs e

GPIO7 is connected to MIO7 pin

/sys/ 3
class/ ——
gpio/ S—
gpio7/
\] v v v : v v
active_low device | direction
L

Device attributes

Shell Commands:

/sys/class/gpio/gpio7 # echo 1 > value

/sys/class/gpio/gpio7 # cat value | _Vﬂ convenient for Conﬁguring and

- controlling devices using shell scripts
C code: -
fprintf (file led7, “%d4d”, 1); /* write */
fscanf (file led7, “%d”, &n_ch); /* read */
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