
CprE 488 – Embedded Systems Design

Lecture 8 – Hardware Acceleration

Joseph Zambreno

Electrical and Computer Engineering

Iowa State University

www.ece.iastate.edu/~zambreno

rcl.ece.iastate.edu

First, solve the problem. Then, write the code. – John Johnson

http://www.ece.iastate.edu/~zambreno
http://www.ece.iastate.edu/~zambreno
http://rcl.ece.iastate.edu/
http://rcl.ece.iastate.edu/

Lect-08.2 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

• Every two years:

– Double the number of transistors

– Build higher performance general-purpose
processors

• Make the transistors available to the masses

• Increase performance (1.8×↑)

• Lower the cost of computing (1.8×↓)

• Sounds great, what’s the catch?

Motivation: Moore’s Law

Gordon Moore

Lect-08.3 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

• The “catch” – powering the transistors without
melting the chip!

Motivation: Moore’s Law (cont.)

2300

2,200,000,000

0.5W

130W

0

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Chip Transistor
Count

Lect-08.4 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

• As transistors get smaller their power density stays
constant

Motivation: Dennard Scaling

Dimensions

Voltage

Doping
Concentrations

×0.7

Area 0.5×↓

Power 0.5×↓

Frequency 1.4×↑

Capacitance 0.7×↓

Transistor: 2D Voltage-Controlled Switch

Power = Capacitance × Frequency × Voltage2

Robert Dennard

Lect-08.5 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

• In mid 2000s, Dennard scaling “broke”

Motivation Dennard Scaling (cont.)

Dimensions

Voltage

Doping
Concentrations

×0.7

Area 0.5×↓

Power 0.5×↓

Frequency 1.4×↑

Capacitance 0.7×↓

Transistor: 2D Voltage-Controlled Switch

Power = Capacitance × Frequency × Voltage2

Lect-08.6 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

• Dark silicon – the fraction of transistors that need to be
powered off at all times (due to power + thermal constraints)

• Evolution of processors strongly motivated by this ending of
Dennard scaling

– Expected continued evolution towards HW specialization / acceleration

Motivation: Dark Silicon

Area 0.5×↓

Power 0.5×↓

2015

Lect-08.7 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

• Hardware Acceleration:

– Performance analysis and overhead

– Coprocessors vs accelerators

– Common acceleration techniques

– Acceleration examples

• Reading: Wolf section 10.4-10.5

This Week’s Topic

Lect-08.8 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

• Accelerating a diverse range of applications using
reconfigurable logic is a trending area:
– D. Hoang, D. Lopresti, “FPGA Implementation of

Systolic Sequence Alignment”
– D. Ross, O. Vellacott, M. Turner, “An FPGA-based

Hardware Accelerator for Image Processing”
– J. Lockwood, “Design and Implementation of a

Multicast, Input-Buffered ATM Switch for the
iPOINT Testbed”

• What these examples have in common:
– Illustrative of the potential for custom computing

to enable faster scientific and engineering
discovery

– Relatively small impact (outside of academia)
– All work done in 1992

Straight from the Headlines...

Lect-08.9 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

And Today?

• Reconfigurable logic supporting the data center

specializing clusters , and tightly integrated on-chip

,

Lect-08.10 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

• Earliest reconfigurable computer proposed at UCLA in the 1960s

– G. Estrin et al., “Parallel Processing in a Restructurable Computer
System,” IEEE Trans. Electronic Computers, pp. 747-755, Dec. 1963.

– Basic concepts well ahead of the enabling technology – could only
prototype a crude approximation

A (Brief) Background

• Current chips – contain memory

cells that hold both configuration
and state information
– Only a partial architecture exists

before programming
– After configuration, the device

provides an execution
environment for a specific
application

• Goal is to adapt at the logic-level to solve specific
problems

Lect-08.11 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

A (Brief) Background
• Today, well known niches for FPGAs:

– Emulation

– Telecom

– Space / defense

• $4.5B market, major device manufacturers:
– Xilinx (~45% market share)

– Altera (~40%)

– Microsemi / Actel (10%)

– Others (Lattice, Achronix, Tabula)

“Sneak Peak: Inside NVIDIA’s Emulation Lab”
– http://blogs.nvidia.com (Cadence Palladium
cluster used for GPU emulation)

“Vodafone Sure Signal: Inside a
Femtocell” – http://zdnet.com (Xilinx
Spartan 3E FPGA used for glue logic)

“How Mars Rover Got its ‘Dream Mode’” –
http://eetimes.com (Microsemi FPGAs
reprogrammed for surface exploration)

Lect-08.12 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

So Who Cares?
• Claim – reconfigurable processors offer a definite advantage over

general-purpose counterparts with regards to functional density
– A. DeHon. “The Density Advantage of Configurable Computing,” IEEE

Computer, pp. 41-49, Apr. 2000
– Computations per chip area per cycle time

• Considering general computing trends (Moore’s Law, Dennard

Scaling, “dark” silicon) – what can I get for my N billion transistors?

Altera Stratix IV EP4S40G5 Intel Haswell Core i7-5960X

Lect-08.13 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Accelerated Systems

• Use additional computational units dedicated to
some functionality

• Hardware/software co-design: joint design of
hardware and software architectures

CPU

accelerator

memory

I/O

request

data

result

data

Lect-08.14 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Accelerator vs. Coprocessor

• A coprocessor executes instructions

– Instructions are dispatched by the CPU

• An accelerator appears as a device on the bus

– Typically controlled by registers (memory-mapped
IO)

Lect-08.15 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

a31 a30………. a0

b31 b0

Swap bit

positions

EX-08.1: Instruction Augmentation

• Processor can only describe a small number
of basic computations in a cycle
– I bits -> 2I operations

• Many operations could be performed on 2 W-
bit words

• ALU implementations restrict execution of
some simple operations
– e. g. bit reversal

Lect-08.16 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Accelerated System Design

• First, determine that the system really needs to
be accelerated
– How much faster will the accelerator on the core

function?
– How much data transfer overhead? Compute bound

vs memory bound vs I/O bound?

• Design accelerator and system interface

• If tighter CPU integration required:

– Create a functional unit for augmented instructions
– Compiler techniques to identify/use new functional

unit

Lect-08.17 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

• If an optimization improves a fraction f of execution
time by a factor of a

• This formula is known as Amdahl’s Law

• Lessons from
– If f →100%, then speedup = a

– If a →∞, the speedup = 1 / (1 – f)

• Summary
– Make the common case fast

– Watch out for the non-optimized component

Amdahl’s Law

affToldaff

Told
Speedup

/)1(

1

]/)1([





Gene Amdahl

Lect-08.18 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Heterogeneous Execution Model

initialization

0.5% of run time

“hot” loop

99% of run time

clean up

0.5% of run time

instructions executed
over time

49% of

code

49% of

code

1% of code

co-processor

Lect-08.19 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Heterogeneous Computing: Performance

• Move “bottleneck” computations from software to
hardware

• Example:

– Application requires a week of CPU time

– One computation consumes 99% of execution time

Kernel

speedup

Application

speedup

Execution

time

50 34 5.0 hours

100 50 3.3 hours

200 67 2.5 hours

500 83 2.0 hours

1000 91 1.8 hours

Lect-08.20 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Hardware/Software Partitioning

for (i=0; i < 128; i++)
 y[i] += c[i] * x[i]
..
..
..

for (i=0; i < 16; i++)
 y[i] += c[i] * x[i]
..
..
..

C Code for FIR Filter

Processor Processor

• ~1000 cycles

Compiler

0

10

20

30

40

50

60

70

80

90

100

Time Energy

Sw

Hardware/software partitioning
selects performance critical regions
for hardware implement

Processor FPGA

* * * * * * * * * * * *

+ + + + + +

+ + +

+ +

+

.

.

.

.

.

Designer creates
custom accelerator

using hardware
design methodology

Hardware ‘for’ loop

0

10

20

30

40

50

60

70

80

90

100

Time Energy

Hw/Sw

Sw

 ~ 10 cycles

 Speedup = 1000 cycles/ 10 cycles
 = 100x

Lect-08.21 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

High-Level Synthesis

Libraries/

Object

Code

Libraries/

Object

Code

Updated

Binary

High-level

Code

Decompilatio

n

High-level

Synthesis

Bitstream Bitstream

uP FPGA

Linker

Hardware Hardware Software Software

• Problem: Describing circuit
using HDL is time
consuming/difficult

• Solution: High-level
synthesis
– Create circuit from high-level

code

– Allows developers to use
higher-level specification

– Potentially, enables synthesis
for software developers

• More on this in a bit

Decompilation HW/SW Partitioning

Compiler

Lect-08.22 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

• Debugging – how to properly test the accelerator separately,
and then in conjunction with the rest of the system (hw/sw
co-simulation)

• Coherency – how to safely share results between CPU and
accelerator
– Impact on cache design, shared memory
– Solutions looks similar to those for resource sharing in

conventional operating systems, but are typically ad-hoc

• Analysis – determining the effects of any hardware
parallelism on performance
– Must take into account accelerator execution time, data transfer

time, synchronization overhead
– Heterogeneous multi-threading helps, but complicates design

significantly
– Overlapping I/O and computation (streaming)

Accelerator Design Challenges

Lect-08.23 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

A Representative Example
• PRISM-I: early example of an FPGA / CPU coupling:

– P. Athanas and H. Silverman. “Processor Reconfiguration through
Instruction Set Metamorphosis,” IEEE Computer, pp. 11-18, Mar. 1993

– An attempt to augment a RISC instruction set with application-specific
operators

– Significant performance speedups for parallel bit-level operations

• Consider a permutation table from the Data Encryption Standard
(DES):

#define DO_PERMUTATION(a, temp, b, offset, mask) \
 temp = ((a>>offset) ^ b) & mask; \
 b ^= temp; \
 a ^= temp<<offset;

#define INITIAL_PERMUTATION(left, temp, right) \
 DO_PERMUTATION(left, temp, right, 4, 0x0f0f0f0f) \
 DO_PERMUTATION(left, temp, right, 16, 0x0000ffff) \
 DO_PERMUTATION(right, temp, left, 2, 0x33333333) \
 DO_PERMUTATION(right, temp, left, 8, 0x00ff00ff) \
 right = (right << 1) | (right >> 31); \
 temp = (left ^ right) & 0xaaaaaaaa; \
 right ^= temp; \
 left ^= temp; \
 left = (left << 1) | (left >> 31);

DES Initial Permutation Table. Note the
equivalent HW realization can be

implemented solely via routing resources.

Partial libgcrypt implementation from des.c. Not well-
suited for conventional SW implementation.

Lect-08.24 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

An (Equally) Representative Ex.
• Applicability of FPGAs to a commonly occurring computational kernel in

scientific applications
– X. Wang and J. Zambreno, "An Efficient Architecture for Floating-Point

Eigenvalue Decomposition", Proc. of the Int’l Symposium on Field-
Programmable Custom Computing Machines (FCCM), May 2014

– Uses the modified one-sided Jacobi rotation approach, mapped to a 1D systolic
array to extract parallelism in EVD computation

– Fundamental design challenge – tackling O(Nk) complexity with P resources
(P<<N)

Lect-08.25 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

A Cause for Pessimism?
• Hardware amenability was a design criterion for the Advanced Encryption

Standard (AES)
– Flurry of activity looking at AES on FPGA (literally 1000s of implementations,

optimizations, attacks)
– J. Zambreno, D. Nguyen and A. Choudhary, "Exploring Area/Delay Tradeoffs in

an AES FPGA Implementation". Proc. of the Int’l Conference on Field-
Programmable Logic and its Applications (FPL), Aug. 2004
• Main contribution: an early exploration of the design decisions that lead to area/delay

tradeoffs in an AES accelerator
• Significant (at the time) throughput of 23.57 Gbps for AES-128E in ECB mode

In
p

u
t

p
la

in
te

x
t

R1

O
u

tp
u

t

C
ip

h
er

te
x
t

R2 R3 R4 R5

R6R7R8R9R10

aesni_encrypt:
 ...
.L000enc1_loop:
 aesenc %xmm4,%xmm0
 decl %ecx
 movups (%edx),%xmm4
 leal 16(%edx),%edx
 jnz .L000enc1_loop
 aesenclast %xmm4,%xmm0
 movups %xmm0,(%eax)
 ret

Partial libgcrypt implementation using Intel’s
AES-NI instruction set. Performance is ~0.75
cycles per byte (40+ Gbps per-thread with

relatively easy software patches)

Lect-08.26 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

FPGA Evolutionary Pressures

• Base logic element consists of a binary lookup-table
(LUT) and a flip-flop

• Inter-element routing dominates both delay and area for
non-trivial circuits

• Consider the critical path of a (naïve) ripple-carry adder:

 4-LUT

4-LUT

4-LUT

4-LUT

4-LUT

...

delay = N  (LUT_delay + routing_delay)
 = N  (1.0 ns + 0.25 ns)
 = 1.25 ns per bit

 So, a 32-bit adder at 25 MHz?

Lect-08.27 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

FPGA Evolutionary Pressures (2)
1) Simple arithmetic circuits

– Dedicated carry logic and routing paths
– Altera Flex 6000, Xilinx XC4000 series (1991)

2) Memory-intensive tasks
– LUTs configurable as distributed RAM resources,

later built-in SRAM blocks, FIFOs
– Altera Flex 10K, Xilinx Virtex series (1998)

3) DSP applications
– Dedicated multipliers, later multiply-accumulate operators
– Altera Stratix, Xilinx Virtex II series (2001)

 • Compelling application:

– K. Townsend and J. Zambreno, "Reduce,
Reuse, Recycle (R^3): a Design Methodology
for Sparse Matrix Vector Multiplication on
Reconfigurable Platforms", Proc. of the Int’l
Conference on Application-specific Systems,
Architectures and Processors (ASAP), 2013.

– 13.7 Gflops for SpMV (matrix dependent)

Lect-08.28 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

FPGA Evolutionary Pressures (3)
4) Hardware / software codesign

– Dedicated CPUs
– Altera Cyclone V, Xilinx Virtex II Pro Series (2002)

5) Hardware-in-the-loop integration
– Various transceivers, clock generators, interfaces, ADCs, temperature sensors,

etc.
– Altera Starix, Xilinx Virtex II Pro Series (2002)

6) Scientific / engineering workloads
– Floating-point cores
– Altera Stratix 10 series (2014)

• Compelling application:

– S. Vyas, C. Kumar, J. Zambreno, C. Gill, R.
Cytron and P. Jones, "An FPGA-based
Plant-on-Chip Platform for Cyber-Physical
System Analysis", IEEE Embedded
Systems Letters (ESL), vol. 6, no. 1, 2014

– Close integration with NIOS CPU,
interfacing with sensors, actuators

Lect-08.29 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Accelerator Proximity

• Although self-reconfiguration is possible, some software
integration with a reconfigurable accelerator is almost
always present

• CPU – FPGA proximity has implications for programming
model, device capacity, I/O bandwidth

Standalone Processing Unit

I/O
Interface

Attached Processing Unit

Workstation

Memory
Caches

Coprocessor

CPU

FU

Lect-08.30 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Splash 2 (1993)
• J. Arnold et al., "The Splash 2 processor and applications," Proc. Of the

Int’l Conference on Computer Design (ICCD), Oct. 1993.
– Attached to a Sparc-2 base, with 17 Xilinx XC4010 FPGAs, 17 512KB SRAMs,

and 9 TI SN74ACT8841s

– Development required up to 5 (!) programs, with code for the host CPU,
interface board, F0, F1-F16, and the TI crossbar chips

Sparc-based
Host

Interface
Board

S-Bus

External Input

External Output

Array BoardsR-Bus

SIMD S-Bus

M1 M4M3M2 M5 M8M7

F1 F4F3F2 F5 F8F7F6

M6

F0

M0

M16

F16

M13

F13

M14

F14

M15

F15

M12

F12

M9

F9

M10

F10

M11

F11

Crossbar Switch

From Prev
Board

To Next
Board

Lect-08.31 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Xilinx Zynq (2013)

Digilent ZedBoard and Zynq-7000 FPGA Xilinx Zynq System-level View in XPS

• Coupling of dual-core ARM Cortex-A9 with reconfigurable logic

• “Processing System” is fully integrated and hardwired, and the
platform can behave like a typical processor by default

• ARM CPU can control reconfiguration of programmable logic region

• Development environment is processor/IP-centric versus FPGA-
centric

Lect-08.32 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Automation to the Rescue?
• Developer efficiency continues to be a limiting factor
• Numerous approaches to the “behavioral synthesis” problem of generating useful

hardware from high-level descriptions
• C-to-HDL variants:

– Handel-C (Oxford)
– ROCCC (UC-Riverside)
– Catapult C (Mentor Graphics)
– SystemC (Accelera)
– Cynthesizer C (Cadence)
– ImpulseC (Impulse)

• Many other comparable approaches:
– HDL Coder (Mathworks)
– Vivado High-Level Synthesis (Xilinx)
– Bluespec, SystemVerilog

• Opinion: these tools can automate certain classes of logic, BUT:
– Cannot generate efficient output for “hard problems”
– Unfamiliar / uncomfortable syntax for both SW and HW engineers
– Similar algorithmic challenges to auto-parallelizing compilers
– Sorry students, you’re still learning VHDL 

New RCL grad student seen
trying to escape the lab

Lect-08.33 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

The Right Stuff
• Applications that map well to FPGA-based acceleration

tend to have common characteristics:
– Significant kernels of computation, significant data

• Amdahl’s law is typically more relevant than Gustafson’s law

• Profile. Don’t Speculate. – Daniel Bernstein

– Fixed-point or integer data representation
• If application is Gflop-constrained, use a GPU

• Changing (slowly), see Altera Stratix 10-based systems

– Fine-grained parallelism
• But if working set fits in cache, will still be hard to beat x86 (MHz

for MHz)

• Systolic model of computation, where FPGA pipeline depth >
equivalent CPU depth and number of FPGA PEs >> number of x86
FUs

– Real-time constraints, system integration
• HPC workloads should go on HPCs (i.e. accelerators are an

orthogonal concern)

• Current GPUs cannot make useful latency guarantees

Lect-08.34 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Typical Application Acceleration Methodology

Algorithmic

Understanding

Application

Profiling

System-Level

Design

Architectural

Design

HW / SW

Co-Design

Integration and

Test

• What is the purpose of the application?
• Can its complexity be lowered?

• Where are the
application’s “hotspots”?

• What hardware and software
infrastructure is needed?

• How can I accelerate
the bottlenecks?

• How does
it all fit?

Lect-08.35 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Ex. Project (1) – HW Accelerated Kalman Filtering

C3x3

A3x3

D3x3

B3x3
2:1 2:1 2:1

BRAMi,0 BRAMi,2BRAMi,1

Port A Port A Port A Port B Port B Port B

Transpose

E=D+CA
-1

B

Piecewise-Affine Kalman Filter (PWAKF)

Significant speedups over SW equivalent

Resource usage grows linearly with model size

Lect-08.36 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Ex. Project (2) – Accelerated Graph Processing

• Implementation of a bulk synchronous parallel model using a high
performance reconfigurable computing platform

Competitive performance
to a large Intel Xeon

system at significantly less
power consumption

Lect-08.37 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Our Reconfigurable Platform
• Convey HC-2ex “hybrid core” computer:

– Tightly coupled host-coprocessor via HCMI
– Globally shared, high performance memory (80 GB/s)
– Four Application Engines (AEs)

• Can be used as a large vector processor, or with custom “personalities”
that accelerate arbitrary applications
– Support for all interfacing logic, hardware/software co-simulation, early prototyping,

performance profiling
– Conventional C/C++ (host) and VHDL/Verilog (coprocessor) for development

Lect-08.38 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Other Views

“Team from Iowa State Wins 2014 MemoCODE
Design Contest”, PRWeb, Oct. 2014

• 14 FPGAs in total:

– 4 FPGAs used as the AEs (Xilinx Virtex 5-
LX330s operating at 150 MHz)

– 8 FPGAs are used as Memory Controllers

– 2 FPGAs are used as the Application Engine
Hub to interface with the CPU subsystem

“Iowa State University Students Win
MemoCODE Design Contest Using Convey
Computer HC-1”, MarketWire, July 2012

Lect-08.39 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Ex. Project (3) – Real-Time Object Tracking

1. Test a previously developed approach for visually
tracking markers mounted on a motor-grader blade

2. Modify as needed, port and accelerate the tracking
algorithm to a Zynq-based development board

3. Create modular hardware IP cores for reuse in
future projects

4. Demonstrate the real-world accuracy of the
tracking

5. Integrate into existing SoC camera-logger-display
platform

6. Field testing and evaluation

Lect-08.40 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

The Algorithm

• Sara Beery, “Tracking the Blade of a
Motor Grader: A Vision Based Solution”.
John Deere Intelligent Solutions
Machine Automation Group, Sep 2015.

• Read image
• Undistort image
• Convert to grayscale

• Perform adaptive thresholding

• Mask image using previous location
• Remove too large / small objects

• Find contours
• Fit ellipses to contours
• Find most appropriate ellipses (<=6)

Found 6
centers?

• Reproject centers
into image

• Find blade location

No
Yes

“Camera” Model

Image
Segmentation

Object Pruning

Marker
Detection

Lect-08.41 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Algorithm Visualization

1. Input image (from file) 2. Lens undistortion 3. Grayscale conversion

4. Adaptive thresholding 5. Object removal 6. Contours 7. Detected markers

Lect-08.42 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Our Initial Observations

• Matlab prototype made heavy use of the
Computer Vision toolbox, so conversion to
OpenCV (C/C++) for an embedded platform
was relatively straightforward

• Initial performance was quite slow, but with
several opportunities for early optimization
– Image masking / cropping can be done earlier

and much more aggressively
– Simpler adaptive thresholding algorithms can be

applied with good accuracy / performance
tradeoffs

– Reading image files from disk a likely bottleneck,
but can be generally ignored as project intent
was to target SoC camera platform (reading
straight from sensor)

Lect-08.43 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Profiling: Version 1.2

Lect-08.44 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

System-Level Design (Zedboard)

SD Card

Linux
filesystem,

Input images

DRAM

Intermediate
buffers,
OpenCV
objects

UART

Zynq-7020 FPGA

ARM CPU

Linux, OpenCV
application, HW
interface logic

VDMA

Processing System Reconfigurable Logic

Pixel
Pipeline

Grayscale

Masking

Thresholding

Lect-08.45 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Architectural Design

• Grayscale conversion and masking are relatively
straightforward

• Sliding window architecture for adaptive thresholding –
applicable to many different image processing algorithms

• Advantages:
– Software configurable for different resolutions, window sizes

– High performance (1 pixel per clock), heavily pipelined for clock
frequency

Lect-08.46 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Resource Utilization

Lect-08.47 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

Performance Results

56

64
61 60

38

31

3 2 2

G: Grayscale
M: Masking

T: Thresholding
C: Cropping

Lect-08.48 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

What Does the Future Hold?

• Continued device specialization
– Blurred lines between FPGAs, GPUs, and CPUs
– X floating-point units, Y other accelerators,

and Z memory controllers with some software-
configurable layout and multi-tasking model

• Deeper integration - reconfigurable logic in

(more) commodity chips

• Use in embedded applications continues to
grow
– Dynamic power versus performance tradeoffs

• Slow adoption in HPC space
– Graph 500 (now), Green 500 (soon), Top 500

(eventually)

Hottest Windows 11 feature

Lect-08.49 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU

• These slides are inspired in part by material
developed and copyright by:

– Marilyn Wolf (Georgia Tech)

– Jason Bakos (University of South Carolina)

– Greg Stitt (University of Florida)

– Hadi Esmaeilzadeh (Georgia Tech)

Acknowledgments

