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• Every two years: 

– Double the number of transistors 

– Build higher performance general-purpose 
processors 

• Make the transistors available to the masses 

• Increase performance (1.8×↑) 

• Lower the cost of computing (1.8×↓) 

 

• Sounds great, what’s the catch?  

 

 

 

Motivation: Moore’s Law 

Gordon Moore 
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• The “catch” – powering the transistors without 
melting the chip! 

Motivation: Moore’s Law (cont.) 
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• As transistors get smaller their power density stays 
constant 

Motivation: Dennard Scaling 

Dimensions 

Voltage 

Doping 
Concentrations 

×0.7 

Area 0.5×↓ 

Power 0.5×↓ 

Frequency 1.4×↑ 

Capacitance 0.7×↓ 

Transistor: 2D Voltage-Controlled Switch 

Power = Capacitance × Frequency × Voltage2 

Robert Dennard 
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• In mid 2000s, Dennard scaling “broke” 

Motivation Dennard Scaling (cont.) 

Dimensions 

Voltage 

Doping 
Concentrations 

×0.7 

Area 0.5×↓ 

Power 0.5×↓ 

Frequency 1.4×↑ 

Capacitance 0.7×↓ 

Transistor: 2D Voltage-Controlled Switch 

Power = Capacitance × Frequency × Voltage2 
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• Dark silicon – the fraction of transistors that need to be 
powered off at all times (due to power + thermal constraints) 

 

 
 

• Evolution of processors strongly motivated by this ending of 
Dennard scaling 

– Expected continued evolution towards HW specialization / acceleration 

Motivation: Dark Silicon 

Area 0.5×↓ 

Power 0.5×↓ 

2015 
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• Hardware Acceleration: 

– Performance analysis and overhead 

– Coprocessors vs accelerators 

– Common acceleration techniques 

– Acceleration examples 

 

• Reading: Wolf section 10.4-10.5 

This Week’s Topic 
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• Accelerating a diverse range of applications using 
reconfigurable logic is a trending area: 
– D. Hoang, D. Lopresti, “FPGA Implementation of 

Systolic Sequence Alignment” 
– D. Ross, O. Vellacott, M. Turner, “An FPGA-based 

Hardware Accelerator for Image Processing” 
– J. Lockwood, “Design and Implementation of a 

Multicast, Input-Buffered ATM Switch for the 
iPOINT Testbed” 

 

• What these examples have in common: 
– Illustrative of the potential for custom computing 

to enable faster scientific and engineering 
discovery  

– Relatively small impact (outside of academia) 
– All work done in 1992 

Straight from the Headlines... 
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And Today?  

• Reconfigurable logic supporting the data center 

specializing clusters , and tightly integrated on-chip 

, 
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• Earliest reconfigurable computer proposed at UCLA in the 1960s 

– G. Estrin et al., “Parallel Processing in a Restructurable Computer 
System,” IEEE Trans. Electronic Computers, pp. 747-755,  Dec. 1963. 

– Basic concepts well ahead of the enabling technology – could only 
prototype a crude approximation 

 

A (Brief) Background 

 
• Current chips – contain memory 

cells that hold both configuration 
and state information 
– Only a partial architecture exists 

before programming 
– After configuration, the device 

provides an execution 
environment for a specific 
application 

 

 

 

• Goal is to adapt at the logic-level to solve specific 
problems 
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A (Brief) Background 
• Today, well known niches for FPGAs: 

– Emulation  

– Telecom 

– Space / defense 

• $4.5B market, major device manufacturers: 
– Xilinx (~45% market share) 

– Altera (~40%) 

– Microsemi / Actel (10%) 

– Others (Lattice, Achronix, Tabula) 

 

“Sneak Peak: Inside NVIDIA’s Emulation Lab” 
– http://blogs.nvidia.com (Cadence Palladium 
cluster used for GPU emulation) 

“Vodafone Sure Signal: Inside a 
Femtocell” – http://zdnet.com (Xilinx 
Spartan 3E FPGA used for glue logic) 

“How Mars Rover Got its ‘Dream Mode’” – 
http://eetimes.com (Microsemi FPGAs 
reprogrammed for surface exploration) 
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So Who Cares?  
• Claim – reconfigurable processors offer a definite advantage over 

general-purpose counterparts with regards to functional density 
– A. DeHon. “The Density Advantage of Configurable Computing,” IEEE 

Computer, pp. 41-49, Apr. 2000 
– Computations per chip area per cycle time 

 
• Considering general computing trends (Moore’s Law, Dennard 

Scaling, “dark” silicon) – what can I get for my N billion transistors?  

Altera Stratix IV EP4S40G5 Intel Haswell Core i7-5960X 
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Accelerated Systems 

• Use additional computational units dedicated to 
some functionality 

• Hardware/software co-design: joint design of 
hardware and software architectures 

CPU 

accelerator 

memory 

I/O 

request 

data 

result 

data 
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Accelerator vs. Coprocessor 

• A coprocessor executes instructions 

– Instructions are dispatched by the CPU 

• An accelerator appears as a device on the bus 

– Typically controlled by registers (memory-mapped 
IO) 
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a31 a30………. a0 

b31                  b0 

Swap bit 

positions 

EX-08.1: Instruction Augmentation 

• Processor can only describe a small number 
of basic computations in a cycle  
– I bits  ->   2I operations 

• Many operations could be performed on 2 W-
bit words 

• ALU implementations restrict execution of 
some simple operations 
– e. g. bit reversal 
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Accelerated System Design 

• First, determine that the system really needs to 
be accelerated 
– How much faster will the accelerator on the core 

function? 
– How much data transfer overhead? Compute bound 

vs memory bound vs I/O bound? 

 
• Design accelerator and system interface 

 
• If tighter CPU integration required: 

– Create a functional unit for augmented instructions 
– Compiler techniques to identify/use new functional 

unit 
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• If an optimization improves a fraction f of execution 
time by a factor of a 

 

 

 

• This formula is known as Amdahl’s Law 

• Lessons from 
– If f →100%, then speedup = a 

– If a →∞, the speedup = 1 / (1 – f ) 

• Summary 
– Make the common case fast 

– Watch out for the non-optimized component 

 

Amdahl’s Law 
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Speedup
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Gene Amdahl 
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Heterogeneous Execution Model 

initialization 

0.5% of run time 

“hot” loop 

99% of run time 

clean up 

0.5% of run time 

instructions executed 
over time 

49% of 

code 

49% of 

code 

1% of code 

co-processor 
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Heterogeneous Computing: Performance 

• Move “bottleneck” computations from software to 
hardware 

• Example: 

– Application requires a week of CPU time 

– One computation consumes 99% of execution time 

Kernel 

speedup 

Application 

speedup 

Execution 

time 

50 34 5.0 hours 

100 50 3.3 hours 

200 67 2.5 hours 

500 83 2.0 hours 

1000 91 1.8 hours 
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Hardware/Software Partitioning 

for (i=0; i < 128; i++)  
   y[i] += c[i] * x[i] 
.. 
.. 
.. 

for (i=0; i < 16; i++)  
   y[i] += c[i] * x[i] 
.. 
.. 
.. 

C Code for FIR Filter 

Processor         Processor 

• ~1000 cycles 

Compiler 
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for hardware implement 
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 Speedup =  1000 cycles/ 10 cycles              
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High-Level Synthesis 

Libraries/ 

Object 

Code 

Libraries/ 

Object 

Code 

Updated 

Binary 

High-level 

Code 

Decompilatio

n 

High-level 

Synthesis 

Bitstream Bitstream 

uP FPGA 

Linker 

Hardware Hardware Software Software 

• Problem: Describing circuit 
using HDL is time 
consuming/difficult 

• Solution: High-level 
synthesis 
– Create circuit from high-level 

code 

– Allows developers to use 
higher-level specification 

– Potentially, enables synthesis 
for software developers 

 

• More on this in a bit 

Decompilation HW/SW Partitioning 

Compiler 
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• Debugging – how to properly test the accelerator separately, 
and then in conjunction with the rest of the system (hw/sw 
co-simulation) 
 

• Coherency – how to safely share results between CPU and 
accelerator  
– Impact on cache design, shared memory 
– Solutions looks similar to those for resource sharing in 

conventional operating systems, but are typically ad-hoc 
 

• Analysis – determining the effects of any hardware 
parallelism on performance 
– Must take into account accelerator execution time, data transfer 

time, synchronization overhead 
– Heterogeneous multi-threading helps, but complicates design 

significantly 
– Overlapping I/O and computation (streaming) 

Accelerator Design Challenges 
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A Representative Example 
• PRISM-I: early example of an FPGA / CPU coupling: 

– P. Athanas and H. Silverman. “Processor Reconfiguration through 
Instruction Set Metamorphosis,” IEEE Computer, pp. 11-18, Mar. 1993 

– An attempt to augment a RISC instruction set with application-specific 
operators 

– Significant performance speedups for parallel bit-level operations 

• Consider a permutation table from the Data Encryption Standard 
(DES): 

#define DO_PERMUTATION(a, temp, b, offset, mask)      \ 
    temp = ((a>>offset) ^ b) & mask;                 \ 
    b ^= temp;                       \ 
    a ^= temp<<offset; 
 
#define INITIAL_PERMUTATION(left, temp, right)        \ 
    DO_PERMUTATION(left, temp, right, 4, 0x0f0f0f0f)  \ 
    DO_PERMUTATION(left, temp, right, 16, 0x0000ffff) \ 
    DO_PERMUTATION(right, temp, left, 2, 0x33333333)  \ 
    DO_PERMUTATION(right, temp, left, 8, 0x00ff00ff)  \ 
    right =  (right << 1) | (right >> 31);            \ 
    temp  =  (left ^ right) & 0xaaaaaaaa;             \ 
    right ^= temp;                                    \ 
    left  ^= temp;                                    \ 
    left  =  (left << 1) | (left >> 31); 

DES Initial Permutation Table. Note the 
equivalent HW realization can be 

implemented solely via routing resources. 

Partial libgcrypt implementation from des.c. Not well-
suited for conventional SW implementation. 
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An (Equally) Representative Ex. 
• Applicability of FPGAs to a commonly occurring computational kernel in 

scientific applications  
– X. Wang and J. Zambreno, "An Efficient Architecture for Floating-Point 

Eigenvalue Decomposition", Proc. of the Int’l Symposium on Field-
Programmable Custom Computing Machines (FCCM), May 2014 

– Uses the modified one-sided Jacobi rotation approach, mapped to a 1D systolic 
array to extract parallelism in EVD computation 

– Fundamental design challenge – tackling O(Nk) complexity with P resources 
(P<<N) 
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A Cause for Pessimism? 
• Hardware amenability was a design criterion for the Advanced Encryption 

Standard (AES) 
– Flurry of activity looking at AES on FPGA (literally 1000s of implementations, 

optimizations, attacks) 
– J. Zambreno, D. Nguyen and A. Choudhary, "Exploring Area/Delay Tradeoffs in 

an AES FPGA Implementation". Proc. of the Int’l Conference on Field-
Programmable Logic and its Applications (FPL), Aug. 2004  
• Main contribution: an early exploration of the design decisions that lead to area/delay 

tradeoffs in an AES accelerator 
• Significant (at the time) throughput of 23.57 Gbps for AES-128E in ECB mode 
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aesni_encrypt: 
 ... 
.L000enc1_loop: 
 aesenc   %xmm4,%xmm0 
 decl   %ecx 
 movups   (%edx),%xmm4 
 leal   16(%edx),%edx 
 jnz   .L000enc1_loop 
 aesenclast  %xmm4,%xmm0 
 movups   %xmm0,(%eax) 
 ret 

Partial libgcrypt implementation using Intel’s 
AES-NI instruction set. Performance is ~0.75 
cycles per byte (40+ Gbps per-thread with 

relatively easy software patches) 
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FPGA Evolutionary Pressures 

• Base logic element consists of a binary lookup-table 
(LUT) and a flip-flop 

• Inter-element routing dominates both delay and area for 
non-trivial circuits 

• Consider the critical path of a (naïve) ripple-carry adder: 

 

 

 4-LUT 

4-LUT 

4-LUT 

4-LUT 

4-LUT 

... 

delay = N  (LUT_delay + routing_delay) 
         = N  (1.0 ns + 0.25 ns) 
         = 1.25 ns per bit 
 
 So, a 32-bit adder at 25 MHz?  
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FPGA Evolutionary Pressures (2) 
1) Simple arithmetic circuits 

– Dedicated carry logic and routing paths 
– Altera Flex 6000, Xilinx XC4000 series (1991) 

2) Memory-intensive tasks 
– LUTs configurable as distributed RAM resources,                                   

later built-in SRAM blocks, FIFOs 
– Altera Flex 10K, Xilinx Virtex series (1998) 

3) DSP applications 
– Dedicated multipliers, later multiply-accumulate operators 
– Altera Stratix, Xilinx Virtex II series (2001) 

 • Compelling application:  

– K. Townsend and J. Zambreno, "Reduce, 
Reuse, Recycle (R^3): a Design Methodology 
for Sparse Matrix Vector Multiplication on 
Reconfigurable Platforms", Proc. of the Int’l 
Conference on Application-specific Systems, 
Architectures and Processors (ASAP), 2013. 

– 13.7 Gflops for SpMV (matrix dependent) 
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FPGA Evolutionary Pressures (3) 
4) Hardware / software codesign  

– Dedicated CPUs 
– Altera Cyclone V, Xilinx Virtex II Pro Series (2002) 

5) Hardware-in-the-loop integration 
– Various transceivers, clock generators, interfaces, ADCs, temperature sensors, 

etc. 
– Altera Starix, Xilinx Virtex II Pro Series (2002)  

6) Scientific / engineering workloads 
– Floating-point cores 
– Altera Stratix 10 series (2014) 
 

• Compelling application:  

– S. Vyas, C. Kumar, J. Zambreno, C. Gill, R. 
Cytron and P. Jones, "An FPGA-based 
Plant-on-Chip Platform for Cyber-Physical 
System Analysis", IEEE Embedded 
Systems Letters (ESL), vol. 6, no. 1, 2014 

– Close integration with NIOS CPU, 
interfacing with sensors, actuators 
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Accelerator Proximity 

• Although self-reconfiguration is possible, some software 
integration with a reconfigurable accelerator is almost 
always present 

• CPU – FPGA proximity has implications for programming 
model, device capacity, I/O bandwidth 

Standalone Processing Unit

I/O
Interface

Attached Processing Unit

Workstation

Memory
Caches

Coprocessor

CPU

FU
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Splash 2 (1993) 
• J. Arnold et al., "The Splash 2 processor and applications," Proc. Of the 

Int’l Conference on Computer Design (ICCD), Oct. 1993. 
– Attached to a Sparc-2 base, with 17 Xilinx XC4010 FPGAs, 17 512KB SRAMs, 

and 9 TI SN74ACT8841s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

– Development required up to 5 (!) programs, with code for the host CPU, 
interface board, F0, F1-F16, and the TI crossbar chips 

Sparc-based
Host

Interface
Board

S-Bus

External Input

External Output

Array BoardsR-Bus

SIMD S-Bus

M1 M4M3M2 M5 M8M7

F1 F4F3F2 F5 F8F7F6

M6

F0

M0

M16

F16

M13

F13

M14

F14

M15

F15

M12

F12

M9

F9

M10

F10

M11

F11

Crossbar Switch

From Prev
Board

To Next
Board
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Xilinx Zynq (2013) 

Digilent ZedBoard and Zynq-7000 FPGA Xilinx Zynq System-level View in XPS 

• Coupling of dual-core ARM Cortex-A9 with reconfigurable logic 

• “Processing System” is fully integrated and hardwired, and the 
platform can behave like a typical processor by default 

• ARM CPU can control reconfiguration of programmable logic region 

• Development environment is processor/IP-centric versus FPGA-
centric 
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Automation to the Rescue? 
• Developer efficiency continues to be a limiting factor 
• Numerous approaches to the “behavioral synthesis” problem of generating useful 

hardware from high-level descriptions 
• C-to-HDL variants: 

– Handel-C (Oxford) 
– ROCCC (UC-Riverside) 
– Catapult C (Mentor Graphics) 
– SystemC (Accelera) 
– Cynthesizer C (Cadence) 
– ImpulseC (Impulse) 

• Many other comparable approaches: 
– HDL Coder (Mathworks) 
– Vivado High-Level Synthesis (Xilinx) 
– Bluespec, SystemVerilog 

 
 

• Opinion: these tools can automate certain classes of logic, BUT: 
– Cannot generate efficient output for “hard problems” 
– Unfamiliar / uncomfortable syntax for both SW and HW engineers 
– Similar algorithmic challenges to auto-parallelizing compilers 
– Sorry students, you’re still learning VHDL  

New RCL grad student seen 
trying to escape the lab 
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The Right Stuff 
• Applications that map well to FPGA-based acceleration 

tend to have common characteristics: 
– Significant kernels of computation, significant data 

• Amdahl’s law is typically more relevant than Gustafson’s law 

• Profile. Don’t Speculate. – Daniel Bernstein 

– Fixed-point or integer data representation 
• If application is Gflop-constrained, use a GPU 

• Changing (slowly), see Altera Stratix 10-based systems 

– Fine-grained parallelism 
• But if working set fits in cache, will still be hard to beat x86 (MHz 

for MHz) 

• Systolic model of computation, where FPGA pipeline depth > 
equivalent CPU depth and number of FPGA PEs >> number of x86 
FUs 

– Real-time constraints, system integration 
• HPC workloads should go on HPCs (i.e. accelerators are an 

orthogonal concern) 

• Current GPUs cannot make useful latency guarantees 



Lect-08.34 CprE 488 (Hardware Acceleration) Zambreno, Spring 2017 © ISU 

Typical Application Acceleration Methodology 

Algorithmic 

Understanding 

Application 

Profiling 

System-Level 

Design 

Architectural  

Design 

HW / SW  

Co-Design 

Integration and 

Test 

• What is the purpose of the application? 
• Can its complexity be lowered? 

• Where are the 
application’s “hotspots”? 

• What hardware and software 
infrastructure is needed?  

• How can I accelerate 
the bottlenecks? 

• How does 
it all fit? 
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Ex. Project (1) – HW Accelerated Kalman Filtering 

C3x3

A3x3

D3x3

B3x3
2:1 2:1 2:1

BRAMi,0 BRAMi,2BRAMi,1

Port A Port A Port A Port B Port B Port B

Transpose

E=D+CA
-1

B

Piecewise-Affine Kalman Filter (PWAKF) 

Significant speedups over SW equivalent 

Resource usage grows linearly with model size 
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Ex. Project (2) – Accelerated Graph Processing  

• Implementation of a bulk synchronous parallel model using a high 
performance reconfigurable computing platform 

Competitive performance 
to a large Intel Xeon 

system at significantly less 
power consumption 
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Our Reconfigurable Platform 
• Convey HC-2ex “hybrid core” computer: 

– Tightly coupled host-coprocessor via HCMI 
– Globally shared, high performance memory (80 GB/s) 
– Four Application Engines (AEs) 

• Can be used as a large vector processor, or with custom “personalities” 
that accelerate arbitrary applications 
– Support for all interfacing logic, hardware/software co-simulation, early prototyping, 

performance profiling 
– Conventional C/C++ (host) and VHDL/Verilog (coprocessor) for development 
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Other Views 

“Team from Iowa State Wins 2014 MemoCODE 
Design Contest”, PRWeb, Oct. 2014 

• 14 FPGAs in total: 

– 4 FPGAs used as the AEs (Xilinx Virtex 5-
LX330s operating at 150 MHz) 

– 8 FPGAs are used as Memory Controllers 

– 2 FPGAs are used as the Application Engine 
Hub to interface with the CPU subsystem 

“Iowa State University Students Win 
MemoCODE Design Contest Using Convey 
Computer HC-1”, MarketWire, July 2012 
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Ex. Project (3) – Real-Time Object Tracking 

1. Test a previously developed approach for visually 
tracking markers mounted on a motor-grader blade 

2. Modify as needed, port and accelerate the tracking 
algorithm to a Zynq-based development board 

3. Create modular hardware IP cores for reuse in 
future projects 

4. Demonstrate the real-world accuracy of the 
tracking 

5. Integrate into existing SoC camera-logger-display 
platform 

6. Field testing and evaluation 
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The Algorithm 

• Sara Beery, “Tracking the Blade of a 
Motor Grader: A Vision Based Solution”. 
John Deere Intelligent Solutions 
Machine Automation Group, Sep 2015. 

• Read image 
• Undistort image 
• Convert to grayscale 

• Perform adaptive thresholding 

• Mask image using previous location 
• Remove too large / small objects 

• Find contours 
• Fit ellipses to contours 
• Find most appropriate ellipses (<=6) 

Found 6 
centers? 

• Reproject centers 
into image 

• Find blade location 

No 
Yes 

“Camera” Model 

Image 
Segmentation 

Object Pruning 

Marker 
Detection 
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Algorithm Visualization 

1. Input image (from file) 2. Lens undistortion 3. Grayscale conversion 

4. Adaptive thresholding 5. Object removal 6. Contours 7. Detected markers 
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Our Initial Observations 

• Matlab prototype made heavy use of the 
Computer Vision toolbox, so conversion to 
OpenCV (C/C++) for an embedded platform 
was relatively straightforward 

• Initial performance was quite slow, but with 
several opportunities for early optimization 
– Image masking / cropping can be done earlier 

and much more aggressively 
– Simpler adaptive thresholding algorithms can be 

applied with good accuracy / performance 
tradeoffs 

– Reading image files from disk a likely bottleneck, 
but can be generally ignored as project intent 
was to target SoC camera platform (reading 
straight from sensor) 
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Profiling: Version 1.2 
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System-Level Design (Zedboard) 

SD Card 
 

Linux 
filesystem,  

Input images 

DRAM 
 

Intermediate 
buffers, 
OpenCV 
objects 

UART 

Zynq-7020 FPGA 

ARM CPU 
 
 

Linux, OpenCV 
application, HW 
interface logic 

 

VDMA 

Processing System Reconfigurable Logic 

Pixel 
Pipeline 

Grayscale 

Masking 

Thresholding 
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Architectural Design 

• Grayscale conversion and masking are relatively 
straightforward 

• Sliding window architecture for adaptive thresholding – 
applicable to many different image processing algorithms 

• Advantages: 
– Software configurable for different resolutions, window sizes 

– High performance (1 pixel per clock), heavily pipelined for clock 
frequency 
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Resource Utilization 
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Performance Results 
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G: Grayscale 
M: Masking 

T: Thresholding 
C: Cropping 
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What Does the Future Hold? 

• Continued device specialization 
– Blurred lines between FPGAs, GPUs, and CPUs 
– X floating-point units, Y other accelerators,  

and Z memory controllers with some software-
configurable layout and multi-tasking model 

 
• Deeper integration - reconfigurable logic in 

(more) commodity chips 
 

• Use in embedded applications continues to 
grow 
– Dynamic power versus performance tradeoffs 

 

• Slow adoption in HPC space 
– Graph 500 (now), Green 500 (soon), Top 500 

(eventually) 

Hottest Windows 11 feature 
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