
SYSTEM	PROGRAMMING
From	the	book	by	STEWART	WEISS

1

Chapter	01
Introduction	to	System	Programming

2

Concepts	Covered

• The	kernel	and	kernel	API,

• System	calls	and	libraries,

• Processes,	logins	and	shells,

• Environments,	man	pages,

• Users,	the	root,	and	groups,

• Authentication,

• File	system,	file	hierarchy,

• Files	and	directories,

• Device	special	files,

• UNIX	standards,	POSIX,

• System	programming,

• Terminals	and	ANSI	escape	sequences,

• syscall,	getpid,	ioctl 3

Modern	Computer	Systems

• Multiuser	Environment
• Multithreading
• Multiple	Software

4

Operating	Systems

Managing	System	Resources:

• Disk: Files,	Directories,	Links,	etc.
• Memory:	Paging,	Segmenting,	Virtualization
• CPU: Processes,	Multithreading
• Network:	HTTP,	NFS,	SSH,	TCP/IP,	etc.
• Screen,	Keyboard,	Mice,	Printers,	etc.

5

Cornerstones	of	UNIX

• Files and File	Hierarchy
• Processes
• Users and Groups
• Privileged and Non-Privileged Instructions
• Environments
• Shells
• Documentation:	Man	Pages,	Texinfo

6

The	UNIX	Kernel:

• Defines	the	Application	Programming Interface
• Provides	all	of	UNIX's	services

7

The	UNIX	Kernel

• A program	can	make	requests	for	services:

• By	making	a	system	call	to	a	function	built	directly	into	the	kernel

• By	calling	a	higher-level	library	routine	that	makes	use	of	this	call

8

The	UNIX	Kernel	API:	System	Resources

• Process	scheduling	and	management
• I/O	handling
• Physical	and	virtual	memory	management
• Device	management
• File	management
• Signaling	and	inter-process	communication
• Multi-threading
• Multi-tasking
• Real-time	signaling	and	scheduling
• Networking	services.

9

The	UNIX	Kernel	API:	System	Calls

• System	Calls	=>	The	Kernel
• System	Calls	+	System	Libraries	+	System	Utilities	=>	The	Kernel	API

printf("Thread id %ld \n", syscall(SYS_gettid));

10

The	UNIX	Kernel	API:	System	Libraries

• UNIX designed	to	keep	the	kernel	as	small	as	possible
• Single	kernel	function	performs input	operations
• read operation reads	large	blocks	of	data from	a device	to	system	buffers
• No	other version in	kernel

• The API	enriched with an	extensive	set	of	higher-level	routines	kept	in	
system	libraries.

11

UNIX	and	Related	Standards:	The	Problem

• Dozens	of	different	UNIX	distributions,	each	with	its	own	different	
behavior.
• Standards	have	been	developed	in	order to	define	UNIX.
• OSs	branded	as	conforming	to	one	standard	or	another.

12

UNIX	and	Related	Standards:	Solution

• POSIX: Portable Operating	System Interface,	IEEE	1003,	ISO/IEC	
9945:2003
• Standardizes all	system	calls,	system	libraries,	and	utility	programs
such	as	grep,	awk, and	sed
• POSIX	standard relies on	C	standard,	since	the API	is	coded in	C

13

Learning	System	Programming	by	Example

Pick	an	existing	program	that	uses	the	API,	e.g.	a	shell	command:

• Using	man	pages,	investigate	system	calls and	kernel	data	structures	
this	program	uses	in	its	implementation

• Write	a	new	version	of	the	program,	iteratively	improve	it	until	it	
behaves	like	the	actual command

14

The	UNIX	File	Hierarchy
Directory Purpose

bin All	essential	binary	executables

boot Static	files	of	the	boot	loader

dev Essential	device	files

etc Host	conguration	files.	Something	like	the registry	of	the	Windows.

home All	user	home	directories

lib Essential	shared	libraries	and	kernel	modules

media Mount	point	for	removable	media

mnt Mount	point	for	mounting	a	file	system	temporarily

opt Add-on	application	software	packages

sbin Essential	system	binaries

srv Data	for	services	provided	by	this	system

tmp Temporary	files

usr Non-essential	binaries,	libraries, and	sources:	/usr/bin &	/usr/sbin: containing	binaries,	/usr/lib,	
containing	library	files,	and /usr/local: "local"	programs	and	data

var Variable	les	(les	containing	data	that	can	change)

15

Pathnames	and	Directories

• Wildcards
• Root Directory	:	/
• Current Directory	:	.
• Parent Directory	:	..
• User	Home	Directory: ~

• Commands
• pwd,	ls,	cd,	mkdir,	rmdir,	rm,	mv

16

Files	and	Filenames

• Regular	files
• Device	files	(character	or	block)
• FIFOs
• Sockets
• Symbolic	links

17

Working	with	Files

Command

cp Copy	File(s)

ln Create	Link

rm Remove

mv Move	/	Rename

cat Print	screen	file(s)

more,	less,	pg Print	page	by	page

head Print	first	n	lines

tail Print	last	n	lines

18

File	Attributes:	Users	and	Groups

• The	set	of	all	users	partitioned	into:	user,	group, others

• File	owner: user.
• User	group associated with file: group.
• Anyone else	other than the user and not	member of	the group called others

• ls –l	shows files with attributes
• stat shows provides even more
• chown user1:group1	file1
• chown -R	user1:group1	dir1
• chgrp group1	file1
• touch file1	(updates timestamp)

19

File	Attributes:	Access	Modes

• Read
• Write
• Execute

20

File	Attributes:	Permissions

• uuu ggg ooo
• wrx wrx wrx

• Example:	110	010	010	=	755	(Octal)

• chmod 755	file1
• chmod –r	755	dir1
• chmod +x	file1
• chmod g+r file1

21

File	Attributes:	Symbolic	Links

• ln	-s	somefile linkname

• Caution:	Circular Reference!

22

Login	Process

• Upon	bootup:
• The	kernel	initializes	the	data	structures	it	needs	and enables	interrupts, and
creates	init process with	pid	1.

• Init process:
• is	the	ancestor	of	all	user-level	processes	in	a	UNIX	system
• runs	with	root's	privileges
• monitors	the	activities	of	all	processes	in	the	outer	layers of	the	OS
• manages	computer	shutdown sequence

23

Login	Process

• Init process	creates, for	each	available	terminal (i.e.,	consoles,	
modems,	etc.),	a	process,	getty, to	listen	for	activity	on	that	terminal

• getty runs	the	login	program, passing	it	the	user-name.

• login	prompts	the	user	for	the password	and	tries	to	validate	it.

24

Login	Process

• If	the password is	valid:
• login	sets	the	PWD to	the	user's	home	directory
• sets	the	process's	user-id	to	that	of	the	user
• initializes	the	user's environment
• adjusts	permissions	and	ownership	of	various	files
• starts	up	the	user's	login shell.

• If	the	password	is	invalid:
• the	login	program	exits
• init starts up a	new	getty for	that	terminal

25

Login	Process:	Network	Logins

• init creates	the	process that	will	listen	for	the	incoming	network	
requests	for	logins.
• For	SSH as	an	example:
• init will	create	a	process	named	sshd,	the	SSH	daemon
• sshd creates a	new	process	for	each	remote	login
• These	processes	will	create	a	pseudo-terminal	driver, which	will	
spawn	the	login	program
• login process does the above password validation procedure

26

A	First	System	Program:	more

• more prints file	content page by page to standard output and it	can	
be	invoked as:

• $	more	file1	file2	...	fileN
• $	ls	-l	|	more
• $	more	<	myfile

27

A	First	System	Program:	outline

1. Show	P	- 1	lines	from	standard	input	(last line	is	for	the	prompt)
2. Show	the	[more?]	message	after	the	lines.
3. Wait	for	an	input	of	Enter,	Space,	or	'q‘
4. If	input	is	Enter,	advance	one	line; go	to	2
5. If	input	is	Space,	go	to	1
6. If	input	is	'q',	e	x	i	t	.

28

A	First	System	Program:	more_v0.1
#include <stdio.h>
#include <stdlib.h>

#define SCREEN_ROWS 23 /*assume 24 lines per screen*/
#define LINELEN 512

int main(int argc,char* argv[]){
FILE* fp;
int i = 0;

if(1 == argc) {
do_more_of(stdin); //no args, read from standard input

} else {
while(++i < argc){

fp = fopen(argv[i], "r");
if(NULL != fp){

do_more_of(fp);
fclose(fp);

} else {
printf("Skipping %s\n", argv[i]);

}
}

}
return 0;

}

#define SPACEBAR 1
#define RETURN 2
#define QUIT 3
#define INVALID 4

int get_user_input() {
int c;

printf("\033[7m more? \033[m"); /*reverse on a VT100*/
while((c = getchar()) != EOF) { /* wait for response*/

switch (c) {
case 'q': /*'q' pressed*/

return QUIT;
case ' ': /*'' pressed*/

return SPACEBAR;
case '\n': /*Enter key pressed*/

return RETURN;
default: /*invalid if anything else*/

return INVALID;
}

}
return INVALID;

}

29

A	First	System	Program:	more_v0.1
void do_more_of(FILE*fp){

char line[LINELEN]; //buffer to store line of input
int num_of_lines = SCREEN_ROWS; //# of lines left on screen
int getmore = 1; //boolean to signal when to stop
int reply; //input from user

while(getmore && fgets(line, LINELEN, fp)) { //fgets() returns pointer to string reader NULL
if(num_of_lines == 0){

reply = get_user_input(); //reached screen capacity so display prompt
switch(reply){

case SPACEBAR:
num_of_lines = SCREEN_ROWS; //allow full screen

break;
case RETURN:

num_of_lines++; //allow one more line
break;
case QUIT:

getmore = 0;
break;
default: //in case of invalid input
break;

}
}

if(fputs(line, stdout) == EOF)
exit(1);

num_of_lines--;
}

} 30

A	First	System	Program:	Keywords	&	
Functions
• FILE: a	file	stream
• fopen opens	a	file	and	returns	a	FILE*
• fclose closes	a	FILE	stream
• fgets reads	a	string	from	a	FILE stream
• fputs writes	a	string	to	a	FILE stream

31

A	First	System	Program:	Arguments	to	Main

int main(int argc, char *argv[])

argc: Argument Count
argv: String Array of arguments

32

A	First	System	Program:	Problems

• Displays the	first	23	lines
• Pressing	space-bar	or	'q'	has	no	effect	until	you	press	the	Enter	key.
• the	more?	prompt	is	not	erased.
• Rediretion	from	stdin	causes	problems:
• We	have	to	get	the	user's	input	from	the keyboard	regardless	of	the	source	of	
the	standard	input	stream

33

Device	Special	Files

• Every	I/O	device	(disk,	printer,	modem,	etc.)	is	associated with	a	
device	special	file
• Special	files	can	be	accessed	using	the same	system	calls	as	regular	
files
• But	the	system	call	activates	the	device	driver	for	that	device rather	
than	causing	the	direct	transfer	of	data
• A	user program	just	connects	to	a	file	variable,	which	may	be	
associated	with	a	disk	file,	a	display	device,	a	printer,	or	any other	
device at	run	time.
• This	is	the	essence	of	device-independent	I/O

34

Device	Special	Files:	Examples

• /dev/tty current terminal
• /dev/console display device
• /dev/mem	is	a	character	interface	to	memory
• /dev/null	discards all data	sent	to	it	and	returns null	characters	('\0')
when read
• /dev/rd0a	or	/dev/hda hard disk	drive	partitions
• /dev/cdrom the	cd-rom drive

35

Device	Special	Files:	Echo to Devices

$	tty
/dev/pts/4
$	echo	"hello"	>	/dev/pts/4
hello

36

A	Second	Attempt	at	the	more Program
void do_more_of(FILE * fp) {

…
…
FILE * fp_tty;
fp_tty = fopen("/dev/tty", "r");
if (fp_tty == NULL) // if open fails

exit(1);
while (getmore && fgets(line, LINELEN, fp)) {

// fgets() returns pointer to string read
if (num_of_lines == 0) {

// reached screen capacity
reply = get_user_input(fp_tty);
switch (reply) {

…
…

int get_user_input(FILE * fp)

…

…
// Now we use getc instead of get
char.
// It is the same except
// that it requires a FILE* argument
while ((c = getc(fp)) != EOF)

…

…

37

A	Second	Attempt	at	the	more Program
int num_lines;

char *endptr;

char *linestr = getenv("LINES");

if (NULL != linestr) {
num_lines = strtol(linestr, &endptr, 0);
if (errno != 0) {

/* handle error and exit */
}
if (endptr == linestr) {

/* not a number so handle error and exit */
}

}

38

A	Second	Attempt	at	the	more Program
#include <sys/ioctl.h>

struct winsize window_arg;

int num_rows, num_cols;

fp_tty = fopen("/dev/tty", "r");

if (fp_tty == NULL)

exit(1);

if (-1 == ioctl(fileno(fp_tty), TIOCGWINSZ, &window_arg))

exit(1);

num_rows = window_arg.ws_row;

num_cols = window_arg.ws_col;

39

Still	Problems?

• ‘Enter’	needed for user keyboard intervention
• Percentage not	shown
• Duplicate ‘more?’	prompts

40

Where	We	Go	from	Here

• Using	only	the	usual	high-level	I/O	libraries,	we	cannot	write	a	
program	versatile as	more
• The	objective	is	to	give	you	the	tools	for	solving	this	kind	of	problem,	
and	to	expose	you	to	the	major	components of	the	kernel's	API,	while	
also	explaining	how	the	kernel	looks	"under	the	hood "
• We	are	going	to look	at	each	important	component	of	the	kernel.	You	
will	learn	how	to	rummage	around	the	file system	and	man	pages	for	
the	resources	that	you	need.

41

Thanks…

42

