
SYSTEM	PROGRAMMING
From	the	book	by	STEWART	WEISS

1

Chapter	2
Login	Records,	File	I/O,	and	Performance

2

Concepts	Covered
• Man	pages	and	Texinfo	pages
• The	UNIX	file	I/O	API
• Reading,	creating,	and	writing	files
• File	descriptors
• Kernel	buffering
• Kernel	versus	user	mode	and	the	cost	of	system calls
• Timing	programs
• The	utmp	file
• Detecting	and	reporting	errors	in	system	calls
• Memory mapped	I/O
• open,	creat,	close,	read,	write,	lseek,	perror, ctime,	localtime,	utmpname,	getutent,	setutent,
endutent,	malloc,	calloc,	mmap,	munmap,	memcpy

• Filters	and	regular	expressions

3

Commands	are	(Usually)	Programs

• In	UNIX,	most	commands	are	programs,	almost	always	written	in	C.
• Shell	builtins (e.g.,	cd and	exit) are	not	programs.
• Some	commands,	such	as	pwd,	are	both	shell	builtins	and	programs.
• By	default	the	shell	builtin	pwd will	be	executed;	or one can	either	
type \pwd or /bin/pwd

4

Locating	Command	Binaries

• The	most	common locations:

/bin
/usr/bin
/usr/sbin:	Administrative	commands
/usr/local/*:	Packages	installed	after	the	OS installation	
/usr/local/bin:	Commands	that	do	not	come	with	the	UNIX	distribution
/usr/ucb:	(ucb:	University	of	California	at	Berkeley)

5

The	who Command

Displays	info	about	who	is	currently	using	the	system.
Produces	a	listing	such	as:

dsutton pts/1 Jul	23	20:22 (66-108-62-189.nyc.rr.com)
ioannis pts/2 Jul	24	16:53 (freshwin.geo.hunter.cuny.edu)
dplumer pts/3 Jul	26	11:34 (66-65-53-41.nyc.rr.com)
rnoorzad pts/4 Jul	23	09:25	 (death-valley.geo.hunter.cuny.edu)
rnoorzad pts/5 Jul	23	09:25	 (death-valley.geo.hunter.cuny.edu)
sweiss pts/6 Jul	26	13:08 (70.ny325.east.verizon.net)

6

Researching	Commands	In	UNIX

1. Read	the	relevant	man	page.
2. Follow	the	SEE	ALSO	links	on	the	page.
3. Read	the	Texinfo page	if	the	man	page	refers	to	it.
4. Search	the	manual.
5. Find	and	read	the	header	(.h)	files	relevant	to	the	command.

7

Reading	Man	Pages

• man	page	for	a command	have the	DESCRIPTION,	SEE	ALSO,	and	FILES sections
• DESCRIPTION	gives	the	details	of	usage.
• For	example,	man page for who says:

who has	an	optional	file	name	argument	and	its	default is	/var/run/utmp which has the	info	
about	current	logins.	The	optional argument	can	be	/var/log/wtmp

• We	can	infer	that	/var/run/utmp contains	info	about	who	is	currently	logged	in.
• There	is	a	section	of	the	man	pages	for the description	of	system	file	formats so
man	wtmp will bring the man page for the wtmp file.
• /var/log/wtmp and /var/run/utmp are system	files and they	are described	on	the	
section	5	of	the	manual.
• There	we	can	learn	that /var/log/wtmp contains	information	about	who	has	
logged	in	previously

8

Man	Pages	and	Headers

• All	POSIX-compliant	UNIX	systems	also	contain	man	pages	for	all	of	
the header	files	included	by	a	function	in	the	kernel's	API.
• For	example

• $	man	stdlib.h

will	display	the	man	page	for	the	header	file	<stdlib.h>

9

Man	Page	Searching

• To	search	for	all	man	pages	that	contain	a	particular	keyword	in	their	
one-line	summaries in	the	NAME	Section,	you	can	type

• $	man	k	keyword

• To this work;	whatis database	should have been built	when	the	man	
pages	were	installed.

10

Man	Page	Searching
• $	man	k	utmp or
• $	apropos	utmp
will	list	all	man	pages	that	contain	the	string	utmp in	their	summaries.

• On	some	systems	apropos	allow	multiple	keyword	and regular expression	searches.
• The	-a	option	makes search	in	man	pages	whose	page	names	and/or	NAME	sections	contain	all
keywords	provided,	as	in:

• $	apropos	-a	convert	case
toupper (3)	- convert	letter	to	upper	or	lower	case
FcToLower (3)	- convert	upper	case	ASCII	to	lower	case
tolower (3)	- convert	letter	to	upper	or	lower	case
towlower (3)	- convert	a	wide	character	to	lowercase
towupper (3)	- convert	a	wide	character	to	uppercase
XConvertCase (3)	- convert	keysyms

11

Man	Page	Searching:	Examples

• $	apropos	-ar	convert	'\<case\>'
• toupper	(3)	- convert	letter	to	upper	or	lower	case
• FcToLower	(3)	- convert	upper	case	ASCII	to	lower	case
• tolower	(3)	- convert	letter	to	upper	or	lower	case

• $	apropos	convert	|	grep	'\<case\>'
• FcToLower	(3)	- convert	upper	case	ASCII	to	lower	case
• tolower	(3)	- convert	letter	to	upper	or	lower	case
• toupper	(3)	- convert	letter	to	upper	or	lower	case
• If	the	output	list	is	still	too	long	to	be	useful,	you	can	lter	it	further	with	another	instance	of	grep:

• $	apropos	convert	|	grep	'\<case\>'	|	grep	'\<ASCII\>'
• FcToLower	(3)	- convert	upper	case	ASCII	to	lower	case

12

Texinfo

• The	man	page	for	a	command	may not	have	enough	content,	SEE	
ALSO section	will	have	a	message	such	as	the	following:

The	full	documentation	for	who	is	maintained	as	a	Texinfo	manual.
If	the	info	and	who	programs	are	properly	installed	at	your	site,
the	command
info	coreutils	'who	invocation'
should	give	you	access	to	the	complete	manual.

13

Texinfo:	info	command

• The	info	command	brings	Texinfo pages,	an	alternative	to man pages.
• To	learn how	to	use	the	Texinfo viewer,	type
• info	info

• The	information	is	stored	in	Texinfo as	a	tree-like	structure.
• An	internal	node	represents	a	topic	area, and	its	child	nodes	are	
specific to	that	topic.
• The	space	bar	will	advance	within	the	entire	tree	using BFS	search.
• Shortcuts are d (down)	u (up) n (next)	p (previous).

14

Digging	Deeper	into	the	who	Command

• The	manual	search	on	the	utmp	file	outputs like:

[Topic] [Title] [Chapter] [Brief	Description]
endutent [getutent] (3) - access	utmp	file	entries
getutent (3) - access	utmp	file	entries
getutid [getutent] (3) - access	utmp	file	entries
getutline [getutent] (3) - access	utmp	file	entries
login (3) - write	utmp	and	wtmp	entries
logout [login] (3) - write	utmp	and	wtmp	entries
pututline [getutent] (3) - access	utmp	file	entries
sessreg (1x) - manage	utmp/wtmp	entries	for	non-init	clients
setutent [getutent] (3) - access	utmp	file	entries
utmp [utmp]	 (5) - login	records
utmpname [getutent] (3) - access	utmp	file	entries
utmpx.h [utmpx] (0p) - user	accounting	database	definitions
wtmp [utmp] (5) - login	records

15

Man	Page	for	utmp
• To display the specific chapter,	type:

$	man	5	utmp
$	man	S5	utmp

• The	beginning	of	the	man	page	for	utmp is	displayed	below (may change from distro to distro):

NAME
utmp,	wtmp - login	records
SYNOPSIS
#include	<utmp.h>
DESCRIPTION
The	utmp file	allows	one	to	discover	information	about	who	is	currently using	the	system.	There	may	be	more	users	currently	using	
the	system, because	not	all	programs	use	utmp logging. Warning:	utmp must	not	be	writable,	because	many	system	programs
(foolishly)	depend	on	its	integrity.	You	risk	faked	system	logfiles and modifications	of	system	files	if	you	leave	utmp writable	to	any	
user. The	file	is	a	sequence	of	entries	with	the	following	structure	declared in	the	include	file	(note	that	this	is	only	one	of	several	
definitions around;	details	depend	on	the	version	of	libc):
(...)

16

Reading	the	Correct	Header	Files

• echo int main() {return 0;} > empty.c
• gcc	-v	empty.c
• The	output	produced	by	gcc:

#include	"..."	search	starts	here:
#include	<...>	search	starts	here:
your_current_working_dir/include
/usr/local/include
/usr/lib/gcc/x86_64-redhat-linux/4.4.5/include
/usr/include
End	of	search	list

17

utmp.h (stripped	down	version)

/* The structure describing an entry in the database of
previous logins . */
struct lastlog
{
__time_t ll_time ;
char ll_line [UT_LINESIZE];
char ll_host [UT_HOSTSIZE];
};
/* The structure describing the status of a terminated
process . This type is used in ‘struct utmp’ below . */
struct exit_status
{
short int e_termination ; /* Process termination status .*/
short int e_exit ; /* Process exit status . */
};
/* The structure describing an entry in the user accounting
database . */

struct utmp
{
short int ut_type ; // Type of login .
pid_t ut_pid ; // Process ID of login process .
char ut_line [UT_LINESIZE]; // Devicename .
char ut_id [4]; // Inittab ID.
char ut_user [UT_NAMESIZE]; // Username .
char ut_host [UT_HOSTSIZE]; // Hostname for remote login .
struct exit_status ut_exit ; /* Exit status of a process
marked as DEAD_PROCESS .*/
long int ut_session ; // Session ID , used for windowing .
struct timeval ut_tv ; // Time entry was made .
int32_t ut_addr_v6 [4]; // Internet address of remote host .
char __unused [20]; // Reserved for future use.
};

18

What	Next?

• We see,	who opens	the	utmp.h and	reads	the	structures	in sequence
and displaying the	appropriate	data	for	each	login.

• We	will	use	this info as	the	basis	for	our	own implementation	of	the	
command.

19

Writing	who command

• The	program	that	implements	the	who command	has	two	key	tasks:

• read	the	utmp structures	from	a	file
• display	the	information	from	a	single	utmp structure	on	the	display	device	in	
a	user friendly format.

20

Reading	Structures	From	a	File

• A	binary file,	e.g.,	utmp:
• Consists of	a	sequence	of	structures
• Cannot be	read	using	the	C	I/O	functions,	such	as get(),	getc(),	fgets(),	and	
scanf(),	nor	the	istreammethods	in	C++.

• Suppose you	do	not	know	the	methods	of	reading	from	a	binary	file.
• You	search man	pages as:

• $	man	k	binary	file	|	grep	read

21

Reading	Structures	From	a	File (Contd.)
• Search	result	may	give:

• fread(),	in	Section	3,	is	part	of	the	C	Standard	I/O	Library.
• read(),	in	Section	2,	is	the	prototype	of	a	system	call.

• Type:

$	man	2	read

NAME
read - read	from	a	file	descriptor
SYNOPSIS
#include	<unistd.h>
ssize_t	read(int	fildes,	void	*buf,	size_t	nbyte);
DESCRIPTION
…

22

The	Difference	Between	<stdio.h>	and	<unistd.h>

• Functions fopen(), fread(), fwrite(), fclose(), etc. defined in <stdio.h> operates on
FILE pointers and are part of ANSI C I/O Library. They are C functions one can use
on any OS.
• Functions open(), read(), write(), and close() are UNIX system calls defined in
<unistd.h>
• The <unistd.h> defines misc. symbolic constants and types, and declares misc.
functions.
• These functions exist only in POSIX-compliant UNIX systems.
• These system calls operate on file descriptors, not file streams.
• The UNIX system calls operate on the kernel directly while ANSI C I/O Library calls
are at a higher level.

23

The	read()	System	Call

• The	read()	function	has	three	arguments.	The	man	page	says	that	the	
read() function	reads	from a	file	associated	with	a	file	descriptor.	A	
file	descriptor	is	a	small,	non-negative	integer.
• The	second	parameter	is	a	pointer	to	memory	buffer.
• The	third	parameter	is	the number	of	bytes	to	read.	The	return	value	
is	the	number	of	bytes	actually	read,	which	can	never be	larger,	but	
might	be	smaller,	or	is	1,	if	something	went	wrong.

24

The	open()	and	close()	System	Calls

To	read	from	a	binary	file,	a	process	must

• open	the	file	for	reading
• read	the	bytes,	and
• close	the	file.

25

The	open() System	Call

• According	to	manpage	of	open():

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *path, int oflag, /* mode_t mode */...);

• The	value	of	oflag is	one	of	the	following	constants	dened	in	<fcntl.h>:
• O_RDONLY open	for	reading	only
• O_WRONLY open	for	writing	only
• O_RDWR open	for	reading	and	writing

26

A	First	Attempt	at	Writing	who
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <utmp.h>

int main () {
int fd ;
struct utmp current_record;
int reclen = sizeof(struct utmp);

fd = open(UTMP_FILE, O_RDONLY);
if (fd == -1) {

perror(UTMP_FILE);
exit(1);

}

while (read(fd, ¤t_record, reclen) == reclen)
show_info(¤t_record);

close(fd);
return 0;

}

void show_info (struct utmp utbufp) {
printf("%-8.8s ", utbufp->ut_name); //the logname
printf(" ");
printf("%-8.8s ", utbufp->ut_line); //the tty
printf(" ");
printf("%10ld ", utbufp->ut_time); //login time
printf(" ");
printf("(%s) " , utbufp->ut_host); //the host
printf("\n"); //newline

}

27

A	First	Attempt	at	Writing	who

• $	who1

system b 952601411	()

952601423	()

LOGIN console 952601566	()

acotton ttyp3 964319088	(math-guest04.williams.edu)

ttypc 964319645	()

28

A	First	Attempt	at	Writing	who:	Problems

• There	are	records	in	the output	that	do	not	correspond	to	user	logins
• Login	times	are	in	some strange	format

29

A	Second	Attempt	at	Writing	who

• The	file	/usr/include/utmp.h contains	denitions of	integer	constants	
used	for	the	ut_typemember.	They	are:

#define EMPTY 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4
#define INIT_PROCESS 5 /* Process spawned by "init" */
#define LOGIN_PROCESS 6 /* A "getty" process waiting for login */
#define USER_PROCESS 7 /* A user process */
#define DEAD_PROCESS 8

30

A	Second	Attempt	at	Writing	who
show_info(struct utmp *utbufp) {

if (utbufp->ut_type != USER_PROCESS)

return;

...

}

void show_time(long timeval) {

// displays time in a format fit for human consumption

// uses ctime to build a string then picks parts out of it

// Note: %12.12s prints a string 12 chars wide and LIMITS

// it to 12 chars.

char timestr = ctime (&timeval);

// string looks like " Sat Sep 3 16:43:29 EDT 2011"

// print 12 chars starting at char 4

printf("%12.12s ", timestr + 4);

}

31

A	Third Attempt	at	Writing	who
• First	two	versions	of who read	the	data	from	the	utmp file	using	the	read()	system	call,	reading
one	utmp struct	at	a	time.

• An	alternative	method	of	accessing	the	data	in	the	file	is	to	take	advantage of	a	data	abstraction	
layer	that	the	API	makes	available.

• When	we	did	the	man	page	search	for man	pages	related	to	the	utmp file,	we	ignored	the	
functions	found	on	the	page	named	getutent:

• endutent [getutent]	(3)	- access	utmp	file	entries
• getutent	(3)	- access	utmp	file	entries
• getutid [getutent]	(3)	- access	utmp	file	entries
• getutline [getutent]	(3)	- access	utmp	file	entries
• pututline [getutent]	(3)	- access	utmp	file	entries
• setutent [getutent]	(3)	- access	utmp	file	entries
• utmpname [getutent]	(3)	- access	utmp	file	entries

32

A	Third Attempt	at	Writing	who

There	is	a	simple	way	of	reading	the	records	in	a	utmp file:

1. Use	utmpname() to	select	the	file	be	accessed	by	the	other	functions.
2. Call	setutent() to	rewind	the	file	pointer	to	the	beginning	of	the	file.
3. Repeatedly	call	getutent()	to	get	the	next	utmp record	from	the	file.	If	no	

record	in	file, NULL	pointer returns.
4. Call	endutent()	when	finished.

33

A	Third Attempt	at	Writing	who
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define _GNU_SOURCE
#include <utmp.h>
#include <fcntl.h>
#include <time.h>

int main (int argc, char *argv[]) {
struct utmp utbuf, utbufp;
int utmpfd;

if ((argc > 1) && (strcmp(argv[1], "wtmp") == 0))
utmpname(_PATH_WTMP) ;

else
utmpname(_PATH_UTMP) ;

setutent();

while (getutent_r(&utbuf, &utbufp) == 0) //getutent_r() is thread safe version of getutent()
show_info(&utbuf);

endutent();
return 0;

}

34

Summary of	who

• Man pages and header files can be used to learn about a command to
implement.
• The utmp interface may not be the same on every UNIX system.
There are GNU, non-POSIX, thread-safe version of the interface, and
POSIX-compliant utmpx interface.
• A truly portable solution includes test macros to conditionally compile
the code depending on the target system.

35

Using	a	File	in	Read/Write	Mode

• open() system	call's	second	parameter	is access	mode	flags:	
O_RDONLY,	O_WRONLY,	and	O_RDWR.
• O_RDWR opens	file in	read/write	mode.
• The	file	is	opened	with	the	current	position	pointer	pointing	to	the	
start	of	the file.
• The	current	position	pointer	is	a	member	of	the	open	file	structure
created	by	the	kernel	when	a	file	is	opened.
• It	points	to	the	position	of	the	next	byte	to	read/write	in	the	file.

36

OS	Logout	Records

The	logout	process	has	to	do	the	following:

1. Open	the	utmp file	for	reading	and	writing
2. Read	the	utmp file	until	it	finds	the	record	for	the	terminal	from	which	the	

logout	took	place.
3. Modify	a	copy	of	the	utmp record	in	the	process's	memory,	and	replace	the	

utmp record	in	the file	with	the	modified	one.
4. Close	the	utmp file.

37

Using	lseek to	Move	the	File	Pointer

• The	lseek()	system	call	changes	the	current	position	pointer	in	an	open	file.

#include <sys/types.h>
#include <unistd.h>
off_t lseek(int fd, off_t dist, int base)

• fd is	the file	descriptor returned	by	open().	The	distance (in	bytes),	dist,	is	used	to	move	
the	current	position pointer.	If	dist is	positive,	it	moves	forward;	if	it	is	negative,	it	moves	
backwards.	The	value	of base flag	determines	the	starting	position	of	the	current	
position	pointer	from	which	it	is	to	be	moved:

1. SEEK_SET dist	is	forwards	relative	to	the	start	of	the	file,
2. SEEK_CUR dist,	is	relative	to	the	current	position	pointer	and	may	be	positive	or negative
3. SEEK_END dist,	is	relative	to	the	end	of	the	file	and	may	be	positive	or	negative.

38

Another	Use	of	lseek()

• One	other	use	of	lseek()	is	determining	an	open	file's	size:

size_t filesize = lseek(fd, 0, SEEK_END);

39

Performance	and	Efficiency	:	The	cp Command

• The	simplest usage is	to	make	a	copy	of	a	single	file:

• $	cp	source_file	target_file

• The	cp command	has	to	create	a	file	if	it	does	not	exist	and	open	it	for	
writing,	or	overwrite	if	it	exists.
• To	overwrite	a	file,	it	is	first	truncated,	i.e.,	its	length	is	set	to	0,	and	
then	the	new	data is	written	to	the	empty	file.

40

Creating/Truncating	Files:	creat() System	Call

• The	creat() opens a	file	for	writing,	if	it	exists,	setting	its	length	to	0,
or if	it	does	not	exist,	to	create	it.	Man	page	for	the	open()	system	call
shows	the	usage:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);
int creat(const char *path, mode_t mode);

fd = creat("prototype", 0751)

41

Writing	to	Files:	The	write()	System	Call

• Used	for	writing	sequences	of	bytes	to	the	file specied	by	a	given	file	
descriptor:

#include <unistd.h>
ssize_t write(int fildes, const void *buf, size_t nbyte);

42

A	First	Attempt	at	cp

• The	structure	of	the	cp command	is:

1. open	the	source file	for	reading
2. open	the	copy file	for	writing
3. while	a	read	of	data	from	the	source file	to	a	buffer is	not	an	empty	

read
4. write	the	data	from	the	buffer to	the	copy file
5. close	the	source file
6. close	the	copy file

43

A	First	Attempt	at	cp
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

#define BUFFERSIZE 4096
#define COPYMODE 0644

void die(char string1, char string2) {
fprintf(stderr, "Error: %s ", string1);
perror(string2);
exit(1);

}

int main(int argc, char argv []) {
int source_fd, target_fd, n_chars;
char buf[BUFFERSIZE];

if(argc != 3){
fprintf(stderr, "usage: %s source destination\n",
argv);
exit(1);

}

if ((source_fd = open(argv[1], O_RDONLY)) == -1)
die("Cannot open ", argv[1]);

if ((target_fd = creat(argv[2], COPYMODE)) == -1)
die("Cannot creat ", argv[2]);

// copy from source to target
while ((n_chars = read(source_fd, buf, BUFFERSIZE)) > 0){

if (n_chars != write(target_fd, buf, n_chars))
die("Write error to ", argv[2]);

}

if (-1 == n_chars)
die("Read error from ", argv[1]);

// close both files
if (close(source_fd) == -1 || close(targe t_fd) == -1)

die("Error closing files", "");

return 0;
}

44

Comments

• The	buffer	declared	an	array	of	BUFFERSIZE chars.

• The	die()	encapsulates	error	handling	logic	and	calls	the	perror().

• Every	call	to	API functions checked	for	a	possible	error.
• The	code	works	correctly.

• But	does	it	run	fast?	How long	will	it	take	to	copy	a	very	large (>100MB) file?

45

Timing	Programs

• The	time command	measures the	amount	of	time	(and	other	
resources)	that	a command	uses.
• The	simplest	form	is:

• $	time	-p	command
• The	'-p'	option	displays	the	traditional	POSIX	output,	which	consists	of	three	
values:

1. Overall	elapsed	clock	time,	real
2. User	mode	elapsed	clock	time,	user
3. Kernel	mode	(System)	elapsed	clock time,	sys

46

Buffering	and	its	Impact	on	Performance (cp)

Buffer	Size	(Bytes) Real	(sec.) User	(sec.) Sys	(sec.)

2 50,19 3,11 28,27

4 33,27 1,59 13,09

8 24,28 0,76 6,08

16 22,56 0,39 3,08

32 20,53 0,21 1,57

64 21,66 0,10 0,78

128 20,12 0,04 0,43

256 18,27 0,02 0,24

512 19,70 0,00 0,15

1024 18,86 0,00 0,09

47

System	Call	Overhead

• When a user process makes a call to the kernel for some kind of
service, the user process stops executing instructions in its own user
space and starts executing instructions that are physically located in
kernel space.

• Prior to making the call, the process executes the user program in a
non-privileged mode, also known as user mode, and this phase of the
process is called the user phase.

48

System	Call	Overhead

• During the system call, the process executes system code with the
privileges accorded the kernel, and is said to be in supervisor or
kernel mode; this is called the kernel phase of the process.

• When the call terminates, this kernel phase terminates and the user
phase resumes. This is a form of context-switch.

49

System	Call	Overhead

• The	kernel	needs	to	execute	in	kernel	mode	because	it	has	to	have	
access	to	all	hardware	instructions.
• In	contrast,	user	processes	must	be	prevented	from	executing	special	
instructions.

50

System	Call	Overhead

• Therefore,	when the	system	call	is	made,	the	machine	must	change	
mode	twice,	at	the	start	and	at	the	end	of	the call.

• It	must	also	change	the	CPU	state,	because	when	the	kernel	runs,	it	
has	a	different	address space,	different	sets	of	resources,	and	so	on.

• All	of	this	changing	means	that	a	system	call	adds overhead	to	the	
running	time	of	the	program.

51

System	Buffering

• When	a	user	process	issues	a	read	request	from	a	disk,	the	kernel transfers	the	
data	from	the	disk	to	a	buffer	in	kernel	memory,	and	when	all	of	the	data
transferred,	it	copies	the	buffer into	the	user	process's	address	space.
• This	copying	of	data	from	kernel memory	to	user	memory	takes	additional	time.	
The	symmetric	situation	occurs	on	writes:	the kernel	copies	the	data	from	the	
user	address	space	into	kernel	memory,	and	from	there	transfers	it	to	disk.

52

System	Buffering

• The	buffering	scheme	makes	as	if	read/write operations	read/write directly
from/to the	device	and	operations	take	place	immediately.
• In	fact,	the	kernel	hides details from	the	user.

53

Memory	Mapped	I/O:mmap(), munmap(),	memcpy()

• A process	can	request	that	a	file	be	mapped	to	a	set	of	virtual	
memory addresses.
• Read/writes to	those	addresses	are,	in	effect,	reads/writes	to	the	file.
• mmap()	maps an entire	input	file to	a	region	of	memory.
• munmap() undoes a	mapping.
• memcpy() does	single	memory to memory	copy.

54

Memory	Mapped	I/O:mmap(), munmap(),	memcpy()

#include <sys/mman.h>

#include <string.h>

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);

int munmap(void *addr, size_t length);

void *memcpy(void *dest, const void *src, size_t n);

55

Memory	Mapped	I/O:mmap(), munmap(),	memcpy()

• The first	argument,	addr is	the	starting	address	for	the	new	mapping. If	addr is	NULL,	kernel	
chooses	the	address.	It	is	best	to	always use	NULL	as	the	first	argument (portability).

• The	second	argument, length is	the	length	in	bytes	of	the	mapping.
• The	third	argument	describes	the	memory	protection	of	the	mapping.	The	possible	values	are:

1. PROT_EXEC Pages	may	be	executed.
2. PROT_READ Pages	may	be	read.
3. PROT_WRITE Pages	may	be	written.
4. PROT_NONE Pages	may	not	be	accessed.

• The	address	of	the	new	mapping	is	returned	as	the	result	of	the	call.

56

Memory	Mapped	I/O:mmap(), munmap(),	memcpy()

• The	fourth	argument	determines	whether	updates	to	the	mapping	are	visible	to	other	processes
mapping	the	same	region,	and	whether	updates	are	carried	through	to	the	underlying	file.	The	
following	flags	are	available:

• MAP_SHARED Share	this	mapping.	The	file	may	not	actually	be updated	until	msync()	or	munmap()	is	called.
• MAP_PRIVATE Create	a	private	copy-on-write	mapping.	It	is	unspecified	whether	changes	made	to	the	file	after	the	

mmap()	call	are	visible in	the	mapped	region.

• Because	we	want	to	do	I/O	we	need	to	set	the	flag	to	MAP_SHARED,	otherwise	no	changes	will	
appear in	the	output	file.

57

Second Attempt	at	cp
#include <sys/mman.h>
#include <sys/stat.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include "../utilities/die.h"

#define COPYMODE 0666

int main(int argc, char argv[]) {
int in_fd, out_fd;
size_t filesize;
char nullbyte;
void source_addr;
void dest_addr;

if (argc != 3) {
fprintf(stderr, "usage : %s source destination \n", argv);
exit(1);

}

if ((in_fd = open(argv[1], O_RDONLY)) == -1)
die("Cannot open ", argv[1]);

if ((out_fd = open (argv[2], O_RDWR | O_CREAT | O_TRUNC, COPYMODE)) == -1)
die("Cannot create", argv[2]);

// get the sizeof the source file by seeking to the end of it:
if ((filesize = lseek(in_fd, 0, SEEK_END)) == -1)
die("Could not seek to end of file ", argv[1]);

lseek(out_fd, filesize -1, SEEK_SET);

//So we write the NULL byte and filesize is now set to filesize
write(out_fd, &nullbyte, 1);

//Time to set up the memory maps
if ((source_addr = mmap(NULL, filesize, PROT_READ, MAP_SHARED, in_fd, 0)) == (void*)-1)
die("Error mapping file ", argv[1]);

if ((dest_addr = mmap(NULL, filesize, PROT_WRITE, MAP_SHARED, out_fd, 0)) == (void*)-1)
die("Error mapping file ", argv[2]);

//copy the input to output by doing a memcpy
memcpy(dest_addr, source_addr, filesize);

munmap(source_addr, filesize); //unmap the files
munmap(dest_addr, filesize);

close(in_fd); //close the files
close(out_fd);
return 0;

}

58

Returning	to	who

• Previous	implementations	of	who read	one	utmp record	at	a	time.
• Each	read	requires	a	system call,	although	a	single	utmp record	is	
quite	small	and	there	are	many	of	them; which	is	inefficient.
• who can	benefit	increasing	the	buffer	size,	just	as	the	cp command.
• Modify	who so	that	it	reads	several	utmp records	at	a	time	and	stores	
them	in	an	internal array

59

Thanks…

60

