
SYSTEM PROGRAMMING
From	the	book	by	STEWART	WEISS

1

Chapter	3
File	Systems	and	the	File	Hierarchy

2

Concepts Covered

• UNIX	file	systems	and	file	hierarchies

• Internal	structure	of	a	file	system

• Mounting
• i-nodes	and	file	attributes

• The	dirent	structure

• Manipulating	directories	and	i-nodes

• Creation	of	files	by	the	kernel

• Implementing	ls,	pwd,	and	du,
• Traversing	file	hierarchies,

opendir,	readdir,	closedir,	seekdir, telldir,	
rewinddir,	stat,	lstat,	fstat, chmod,	chown,	creat,	
link,	unlink, unlinkat,	readlink,	umask,	fnmatch,	
chgrp,	chown,	utime,getpwuid, getgrgid,	
getpwnam,	getgrnam, rename,	ntfw,	fts_open,	
fts_read, fts_children,	fts_close.

3

File	System:	An	Abstraction	Supporting

• Create,	Delete and Modify files;
• Organize files	and directories;
• Control	access	to	files	and	directories;
• Manage	disk	space.

4

File	System	(FS)	Mounting

• In	Microsoft	DOS:
• Each	disk	partition	has	a	drive	letter,
• The	file	hierarchy	on	each separate	drive	or	partition	is	separate	from	all	
others.
• DOS has	multiple	trees	whose	roots	are	drive	letters

• In	UNIX:
• There	is	a	single	file	hierarchy.
• It	is	a	tree of	directories	as	nodes	and	files as	leaves.
• An	FS’s	root may	be mounted	to	some	directory	of the	single	file	hierarchy.
• Then	the	FS becomes	a	subtree	of	the	hierarchy.

5

File	System	Mounting

• The	mount command	without	arguments	displays	a	list	of	the	FSs	currently	
mounted:

/dev/mapper/root.vg-root.lv on / type	ext3	(rw)
proc on	/proc	 type	proc	(rw)
sysfs on	/sys type	sysfs	(rw)
devpts on	/dev/pts type	devpts	(rw,gid=5,mode=620)
tmpfs on	/dev/shm type	tmpfs	(rw,rootcontext="system_u:object_r:tmpfs_t:s0")
/dev/sda1 on	/boot type	ext3	(rw)
none on	/proc/sys/fs/binfmt_misc type	binfmt_misc	(rw)

6

Disk	Partitions
Physical	portions	of	the	same	disk	divided	into	logical	devices	called	Partitions	which	may allow:
• More	control	of	security:

• Different	user	groups	on	different	partitions
• Different	mounting	options (i.e.,	read	only) on	separate	partitions

• More	efficient	use	of	the	disk:	
• Different	partitions	could	use	different	block	sizes	and	file	size limits

• More	efficient	operation:
• Shorter	seek	distances	would	improve	disk	access	times

• Improved	back-up	procedures:
• Backups	could	be	done	per partitions,	not	disks

• Improved	reliability:
• Damage	could	be	restricted	to	a	single	partition	rather	than	the	entire disk
• Redundancy	could	be	built	in

• But, once	partitions	created,	their	size can	not	be	increased:	Need	to	reorganize	whole	the	Disk!

7

Defining	and	Creating	File	Systems

• In	UNIX,	disk	partitions	are	not	necessarily	disjoint.
• Partitions	often	named	with	letters,	i.e.,	a,	b,	c, etc.
• The	"c"	partition	is	the	entire	disk and	does	not	have	an	FS.	It	is used	to access	
the	disk	block	by	block.
• The	"b"	partition	reserved	as the	swapping	store and	does not	have	an FS.
• The	"a" partition	is	where	the	kernel	installed	and it	is	usually	very	small.

8

Defining	and	Creating	File	Systems

• To	create	files	in	a	partition,	an FS	must	be	created	first:

• Partition	divided	into	logical	blocks of	size 1024 - 4096 bytes each.
• The	block	size	is	fixed	at	FS	creation time.
• Larger	block	sizes	result	in	more	wasted	disk	space.
• Larger	blocks	are appropriate	for	FSs	expecting	large	files.
• Smaller	block	sizes	result	in	more	disk	activity.

9

The	Components	of	UNIX	File	System

• Every	FS	has	(at	least)	one	superblock	located	at	the	beginning	of	its	allocated	
storage.
• The superblock	contains	information	about	how	FS is	configured,	e.g.,	block size,	
block	address	range,	and	mount	status.
• Copies	of	the	superblock	stored	in several	other	places	within	a	partition.
• Each	FS	in	UNIX	has	at	least	one	table that	identifies	the	files	in	it.
• The	entries	of the	table	called	i-nodes,	and	their indices	called	i-numbers.
• The	i-nodes	contain	file	attributes	and	a	map	indicating	locations	of the	blocks of	
the	file.	

10

Figure	3.1:	Unix	File	System	Layout

• There are multiple superblocks and
multiple i-node tables in a single file
system, for performance reasons.

• The i-node in position 2 of the table
usually points to the entry for the root
directory file in the file system.

11

The	i-node attributes

• The	owner,
• The	group,
• The	permissions	allowed	on	the	file	and	the	file	type,
• The	number	of	links	to	the	file
• The	time	of	last	modication,
• The	time	of	last	access,
• The	time	the	attributes	were	last	changed,
• The	size	in	bytes	of	the	file,
• The	number	of	blocks	used	by	the	file,
• The	id	of	the	device	on	which	the	file	resides.

12

How	the	Kernel	Creates	Files

The	kernel;

• creates	an	i-node	for	the	file,	if	possible.
• fills	in	the	i-node	with	the	file	status.
• allocates	data	blocks	for	the	file	and	stores	the	file	data	in	these	blocks.
• records	the	addresses	of	the	data	blocks	in	the	i-node.
• creates	a	directory	entry	in	the	scratch	directory	with	the	i-node	number	and	file name.

13

The	ls	Command

ls	[options]	FILE	FILE	...

where	FILE,	FILE,	.	.	.	are	filenames,	whether	they	are	regular	files, special	files,	
symbolic	links, or	directories.

• When	the	argument	is	a	directory,	ls	displays	its	contents.
• When	the	argument	is	not	a	directory,	ls	displays	its	name.

14

The	Directory	Interface

From the	kernel perspective,	regular	files	and	directories	are	just	sequences	of	
bytes except	that directories:
• Are	never	empty:
• Every	directory	has	. and	.. referring to	the	directory	itself	and	to	the	parent	
directory.

• They	cannot	be	written	to	by	unprivileged	programs:
• They	can	only	be	modified	by	very	specific	system	calls.

• They	have	a	specific	structure:
• A	directory	is	a	file	that	contains	a	collection	of	(name,	i-number)	pairs.

15

Reading	Directories
$	man	k	directory	|	grep	read

$man	3p	readdir

SYNOPSIS
#include	<sys/types.h>
#include	<dirent.h>
struct	dirent		readdir(DIR		dir);

DESCRIPTION
The	readdir()	function	returns	a	pointer	to	a	dirent
structure	representing	the	next	directory	entry	in	the
directory	stream	pointed	to	by	dir.	It	returns	NULL	on
reaching	the	end-of-file	or	if an	error	occurred.

SEE	ALSO
read	(2),	closedir	(3),	dirfd	(3),	ftw	(3),	opendir	(3),
rewinddir	(3),	scandir	(3),	seekdir	(3),	telldir	(3),
feature_test_macros	(7)

16

The	dirent structure

struct dirent {
ino_t d_ino; // inode number POSIX defined
off_t d_off; // offset to the next dirent
unsigned short d_reclen; // length of this record
unsigned char d_type; // type of file
char d_name[256]; // filename POSIX defined

};

17

opendir

SYNOPSIS
#include	<sys/type	s.h>
#include	<dirent.h>
DIR	opendir(const	char	name);

DESCRIPTION

The	opendir()	function	opens	a	directory	stream corresponding	to	the	directory	name,	and	returns	a	pointer	to	the directory	
stream.	The	stream	is	positioned	at	the	first entry	in	the	directory.

RETURN	VALUE

The	opendir()	function	returns	a	pointer	to	the	directory stream.	On	error,	NULL	is	returned,	and	errno	is	set appropriately.

18

#include <dirent.h>
long telldir(DIR *dirp); // the entry which is about to be read by a program

telldir() returns	its	index,	which	is	an	integer	offset	from	the	beginning	of	the	directory	stream.
To	start	all	over	again	without	closing	the	directory,	rewinddir()	will	do	that,	and seekdir()	will	move	the	pointer	to	a	specified	index

#include <dirent.h>
void seekdir(DIR *dirp, long offset);

The	offset	returned	by	telldir() can	be	passed	to	seekdir().

DIR	is	not	a	macro,	but	a	typedef:

typedef struct __dirstream DIR;

/usr/include/linux/limits.h:#define NAME_MAX 255
/* # chars in a file name */
/usr/include/glib-1.2/glib.h:# define NAME_MAX 255

19

NAME
stat,	lstat,	fstat	- get	file	status

SYNOPSIS
#include	<sys/types.h>
#include	<sys/stat.h>
int	stat	(const	char	path,	struct	stat		buf);
int	lstat	(const	char	path,	struct	stat		buf);
int	fstat	(int	fildes,	struct	stat		buf);

DESCRIPTION
These	functions	return	information	about	the	specified file.
You	do	not	need	any	access	rights	to	the	file	to	get this	
information	but	you	need	search	rights	to all directories
named	in	the	path	leading	to	the	file. stat	stats	the	file	
pointed	to	by	file_name	and	fills	in buf. lstat	is	identical	to	
stat,	except	in	the	case	of	a symbolic	link,	where	the	link	
itself	is	stat-ed,	not	the file	that	it	refers	to. fstat	is	identical	
to	stat,	only	the	open	file	pointed to	by	filedes	(as	returned	
by	open	(2))	is	stat-ed	in	place of file_name.

They	all	return	a	stat	structure	which	has	the	following fields:

mode_t	st_mode;	// file	mode	(see	mknod	(2))
ino_t	st_ino;	// Inode	number
dev_t	st_dev;	// ID	of	device	containing	a directory	entry	for	this	file
dev_t	st_rdev;	// ID	of	device
//This	entry	is	defined	only	for	char	special	or	block	special	files
nlink_t	st_nlink;	// Number	of links
uid_t	st_uid;	// User	ID	of	the	file's	owner
gid_t	st_gid;	// Group	ID	of	the	file's	group
off_t	st_size;	//	File	size	in	bytes
time_t	st_atime;	// Time	of	last	access
time_t	st_mtime;	// Time	of	last	data	modification
time_t	st_ctime;	// Time	of	last	file	status	change
//	Times	measured	in	seconds	since	00	:	00	:	00	UTC,	Jan.1,	1970
long	st_blk	size;	// Preferred	I/O	block	size
blkcnt_t	st_blocks;	//	Number	of	512	byte	blocks	allocated

20

The	Three	Special	Bits

Consider	the	problem:
• A	user	should	be	able	to	change	his/her	password.
• Since	all	passwords	stored	in	a	single	file,	the	user	needs	write	permission	to	
modify	the	file.
• If	user given write	permission	on	the	password	file,	he/she	can	modify	anyone
else's	password	too,	which	is	not	acceptable.
• The password file	should	be	owned	by	root,	and	no	user	(except	the	su) should	
have	write	permission to	it.
• Then,	what	to	do?

Solution	on	next	slide!

21

The	Three	Special	Bits:	The	Set-User-ID	Bit

• A process	has	two	associated	user-ids:	real	user-id and	effective	user-id.
• The	real	user-id	can	never	be	changed.	The	effective	user-id	can	be.
• Generally,	when	a	user	runs	a	command,	the	process executing	the	command	has	the	same	
effective	user-id of the	user	invoking the	command.

• This	is	usually	the	real	user-id	of	the	user	who	indirectly	ran	the process.
• If	the	setuid	bit	is	set	on the exe	file of	the	command,	the	effective	user-id	of	the	process	
executing	it, is	the	user-id	of	the	owner	of	the	file.

• In passwd command case,	root	owns	the /usr/bin/passwd	program	file thus no	user	can	modify	
the	password	file,	but	root.

• But	since	its setuid	bit	turned	on, passwd	command	runs	with effective	user-id	of the root.

22

The	Three	Special	Bits:	The	Set-User-ID	Bit

• Consequently,	passwd command CAN	access	the	password	file	and	change	it,	but	
the	command	checks the	real	user-id	of	the	caller	(by	calling	getuid())	first,	and	it	
limits	access	to	the	appropriate	line	of	the	password	file.
• This	prevents	passwd	and consequently	the	user	from	modifying	anything	other	
than	the	password	of	its	own	entry.

• Other uses	of	the	setuid	bit	include	protecting	global	game	data,	protecting	the	
print	spooler,	protecting global	databases	in	general.

23

The	Three	Special	Bits:	The	Set-Group-ID	Bit

• Set-Group-ID	Bit sets	the	effective-group-id	of	the	running program.
• If	a	program	has	the	setgid	bit	on,	it runs	with	the	privileges	of the	owning	group, not	privileges of	
the	running	group.

• Example

• The	write	command	(/usr/bin/write)	lets	users	write	to	a	terminal.
• But,	how	is	it	possible, one	person	writes on	another's	terminal?
• The	write	command	needs	write	permission	on	the	terminal	on	which	it	wants	to	write.
• Take a	look at /dev/pts.	The	list	will	look	something	like:

• crw------- 1	tlewis	tty	136,	1	Mar	5	17:50	1
• crw--w---- 1	tbw	tty	136,	3	Mar	3	16:22	3

24

The	Three	Special	Bits:	The	Set-Group-ID	Bit

• Notice	that	all	terminals belong	to	the	tty	group and	some	of	them have	the	group	write	bit	set.
• This	means	any	process	that	runs	with	an	effective	group-id	of	tty can	write	to	those	terminals	
whose	write	bit	is	set.	Now	take	a	look	at	the	write	command's	status:
$	ls	-l	/usr/bin/write
-rwxr-sr-x	1	root	tty	10124	Jul	27	2005	/usr/bin/write*

• Now, observe	that	the	write	exe	is	in	the	tty	group	and	its	setgid	bit	is	set.
• When	a	user	runs write,	the	process	that	executes	it	runs	with	the	effective	group-id	of	the	write	
program,	which	is the	tty	group.

• This	implies	that	the	write	command	will	be	able	to	write	to	any	terminal	whose group	write	bit	is	
set.

• Since	it	can	be	annoying	to	receive	messages	on	your	terminal	while	you	are working,	UNIX	
provides	a	simple	command	to	query,	enable,	or	disable	this	bit:
$	mesg	[y/n]

• If	you	type	mesg alone,	it	will	display	y	or	n,	depending	on	whether	the	bit	is	set.	Typing	mesg	y
turns	it	on,	and	mesg	n turns	it	off.

25

The	Three	Special	Bits:	The	Sticky Bit

• Also	called	the	save-text-image	bit.
• Originally,	UNIX	was	a	pure	swapping	operating	system.
• Processes swapped	in	and	out	of	memory	to	maintain	the	multiprogramming	level.
• The	swapping	store	was	a separate	disk	or	a	partition	used	for	storing	process	images.
• Process	images kept	in	contiguous	bytes on	the	swapping	store,	making	reads	and	writes	
faster.

• A	program	used	by	many	people	might	go	through	many	memory	loads	and	unloads	
each day.

• Putting	it	in	the	swapping	store	made	loads	and	unloads	easier,	because	the	file	was	in	
one piece.

• Setting	the	sticky	bit	on	a	program	file	prevented	it	from	being	removed	from	the	
swapping store.

26

The	Three	Special	Bits:	The	Sticky Bit

• For	directories,	it	is	a	different	story.
• If	a	directory	has	sticky	bit	on:

• the	directory	is	readable	and	writable	by	everyone,
• but	no	one can	delete	another	person's	files	in	that	directory.

• This	is	how	UNIX	can	implement	directories such	as	/tmp,	which	is	used	to	store	
temporary	files.

27

The	Special	Bits	and	ls

• If	the	set-uid	bit	turned	on,	the	permission	of	user	prints	as:			-rws------
• If	the	set-gid	bit	turned	on,	the	permission	of	group	prints	as: ----rws---
• If	the	sticky	 bit	turned	on,	the	permission	of	other	prints	as: -------rwt

28

ls	Implementation:	Printing	File	Status
void print_file_status(char* dname, struct stat statbuf) {

ssize_t count;
char buf[NAME_MAX];

printf("%10.10s", mode2str(statbuf.st_mode)); //print type, permissions
printf("%3d", (int)statbuf.st_nlink); // print number of links
printf(" %-8.8s ", uid2name(statbuf.st_uid)); // print owner's name if it is found using getpwuid()
printf(" %-8.8s ", gid2name(statbuf.st_gid)); // print group name if it is found using getgrgid()
printf(" %8jd ", (intmax_t)statbuf.st_size); // print sizeof file
printf(" %.12s ", get_date_no_day(statbuf.st_mtime)); // print time of last modification
printf(" %s ", dname); // print file name

if (S_ISLNK(statbuf.st_mode)) { // if it is a link
if (-1 == (count = readlink(dname, buf, NAME_MAX-1)))

perror("print_file_status: ");
else {

buf[count] = '\0';
printf("->%s ", buf); // print the linked file

}
}

printf("\n ");
}

29

ls	Implementation:	Mode	as	Human	Readable
char* mode2str(int mode) {

static	char str[11];
strcpy(str, "-----------"); // default = no perms
if (S_ISDIR(mode)) str[0] ='d'; // directory?
else if (S_ISCHR(mode)) str[0] = 'c'; // char devices
else if (S_ISBLK(mode)) str[0] = 'b'; // block device
else if (S_ISLNK(mode)) str[0] = 'l'; // symbolic link
else if (S_ISFIFO(mode)) str[0] = 'p'; // Named pipe (FIFO)
else if (S_ISSOCK(mode)) str[0] = 's'; // socket
if (mode & S_IRUSR) str[1] = 'r'; // 3 bits for user
if (mode & S_IWUSR) str[2] = 'w';
if (mode & S_IXUSR) str[3] = 'x';
if (mode & S_IRGRP) str[4] = 'r'; // 3 bits for group
if (mode & S_IWGRP) str[5] = 'w';
if (mode & S_IXGRP) str[6] = 'x';
if (mode & S_IROTH) str[7] = 'r'; // 3 bits for other
if (mode & S_IWOTH) str[8] = 'w';
if (mode & S_IXOTH) str[9] = 'x';
if (mode & S_ISUID) str[3] = 's'; // set-uid
if (mode & S_ISGID) str[6] = 's'; // set-gid
if (mode & S_ISVTX) str[9] = 't'; // sticky bit
return str;

}

30

ls	Implementation:	Recent?	Or	Old?
char get_date_no_day(time_t timeval) {

//# of secs in 182 days
const int sixm onths = 15724800;

static char outstr[200];
struct tm tmp;
time_t current_time = time(NULL);
int recent = 1;

if((current_time - timeval) > sixmonths)
recent = 0;

tmp = localtime(&timeval);

if(tmp == NULL) {
perror("get_date_no_day: localtime");

}

if(!recent) {
strftime(outstr, sizeof(outstr), "%b %e %Y", tmp);
return outstr;

}
else if(strftime(outstr, sizeof(outstr), "%c ", tmp) > 0)

return outstr+4;
else {

printf("error with strftime\n");
strftime(outstr, sizeof(outstr), "%b %e %H:%M", tmp);
return outstr;

}
}

31

ls	Implementation:	UID	&	GID	Name

//Given user-id, return user-name
char* uid2name(uid_t uid) {
struct passwd pw_ptr;
static char numstr[10]; //must be static!
if ((pw_ptr = getpwuid(uid)) == NULL) {
//convert uid to a string
sprintf(numstr, "%d", uid);
return numstr;

} else
return pw_ptr->pw_name;

}

//Given group-id, return group-name
char* gid2name(gid_t gid) {
struct group grp_ptr;
static char numstr[10];
if ((grp_ptr = getgrgid(gid)) == NULL) {
// convert gid to string
sprintf(numstr, "%d", gid);
return numstr;

} else
return grp_ptr->gr_name;

}

32

ls	Implementation:	Main	Function
void ls(char dirname[], int do_longlisting);
void print_file_status(char* dname, struct stat buf);
char* mode2str(int mode);
char* uid2name(uid_t uid);
char* gid2name(gid_t gid);

int main (int argc, char* argv[]) {
int longlisting = 0;
int ch;
char options[] = ":l";
opterr = 0; // turn off error messages by getopt()

while (1) {
ch = getopt (argc, argv, options);
// it returns -1 when it finds no more options
if (-1 == ch)
break;

switch (ch) {
case 'l':
longlisting = 1;

break;
case '?':
printf("Illegal option ignored.\n");

break;
default:
printf ("getopt returned character code 0%o ??\n", ch);

break;
}

}

if (optind == argc) // no arguments; use .
ls(".", longlisting);

else
while (optind < argc){
ls(argv[optind], longlisting);
optind++;

}
return 0;

}

33

ls	Implementation:	ls	itself
void ls(char dirname[], int do_longlisting) {
DIR *dir; // pointer to directory struct
struct dirent *dp; // pointer to directory entry
char fname[PATH_MAX]; // string to hold path name
struct stat statbuf; // to store stat results
// test if a regular file, and if so, just display it
if (lstat(dirname, &statbuf) == -1) {
perror(fname);

return; // stat call failed so we quit this call
} else if (!S_ISDIR(statbuf.st_mode)) {
if (do_longlisting)
print_file_status(dirname, statbuf);

else
printf ("%s \n", dirname);

return;
}
if ((dir = opendir(dirname)) == NULL)
fprintf (stderr, "Cannot open %s\n", dirname);

else {
printf ("\n%s:\n", dirname);

// Loop through directory entries
while ((dp = readdir(dir)) != NULL) {
if (strcmp(dp->d_name, ".") == 0 || strcmp(dp->d_name, "..") == 0)
continue; // skip dot and dot-dot entries

if (do_longlisting) {
// construct a pathname for the file using the
// directory name passed to the program and the
// directory entry
sprintf (fname,"%s/%s ", dirname, dp->d_name);
// fill the stat buffer
if (lstat(fname, &statbuf) == -1) {
perror(fname);
continue; // stat call failed but we go on

}
print_file_status(dp->d_name, statbuf);

} else
printf ("%s \n", dp->d_name);

}
}

}

34

Modifying	File	Attributes

• We	have	seen	how	to access attributes	stored	in	the	i-nodes,	but	did	not	modify	
any	of	them.

• Now	we	investigate how	attributes	can	be	modified	by	user	level	programs.

35

Type	of	a	File

Type	of	files determined	at	creation	
time	and	cannot	be	changed	later. A file	
can	be:
• A	regular	file,
• A	directory,
• A	device	special	file,
• A	socket,
• A	symbolic	link,
• A	named	pipe.

• The	creat()	system	call	creates	regular	files.

• The	mkdir()	call	makes	a	directory.

• The	mkdir command	creates	a	new	directory.
• The	mknod()	is	the	system	call	that	creates	
special	files.

• The	mknod command	makes	these	at	the	user	
level.

• Themkfifo()	system	call	creates	FIFO	special	
files.

36

Permission	Bits	and	Special	Bits

• Permission	bits	initialized	when	kernel	creates	files.
• The	second	argument of	the	creat() call	initializes the	file	mode.
• However, this	number	modified	by	applying	the	process's umask before	assigning	
to	the	file,	using	bitwise	operation:	"mode	=	mode	&	~umask"
• Every	user	has	a	umask. The	umask	of	the	process	is	the	umask	of	the	effective	
user-id	of	the	process. If the	umask	has	value	022:
• fd	=	creat("newfile",	0766);
would	create	"newfile" with	permission	0744	(=766	&	~022).

37

Permission	Bits	and	Special	Bits

• A	process	inherits	its	umask	value,	but	can	change	it	by	calling	umask():

#include	<sys/types.h>
#include	<sys/stat.h>
mode_t	umask(mode_t	mask);

• The	umask() system	call (or	umask	shell	command) changes	the	umask and
returns the	value	of	the	previous	mask.	The	mask	parameter	bitwise	AND’ed	with	
0777	to	strip	out	the	file	type	and	special	bit	values.
• The	chmod() system	call (or	chmod	shell	command) changes	a file's	permission	
bits:
#include	<sys/stat.h>
int	chmod(const	char	*path,	mode_t	mode);

38

Number	of	Links	to	a	File

• The	name	of	a	file	is	just	a	name	stored	in	a	directory.
• The	total	number	of	names	of	a	file	called	its	link	count and	stored	in	i-node.
• When a	name	deleted, the	link	count	is	decremented,	and	the	file	actually	
removed	when	it	reaches	zero.
• The	link() system	call	creates	a	new	name	for	an	existing	file	and	the	unlink()	and	
unlinkat() calls	remove	a	name	for	a	file:

#include	<unistd.h>
int	link(const	char	*existingpath,	const	char	*newpath);
int	unlink(const	char	*path);

#include	<fcntl.h>
int	unlinkat(int	dirfd,	const	char	*pathname,	int	flags);

39

Owner	and	Group	of	a	File

• The	owner	and	group	of	a	file	are	established	when	the	file	created by	
calling	creat().
• The	kernel uses	the	effective-user-id	and	the	effective	group-id	of	the	
process	that	issued	the	creat()	call	as the	owner	and	group	of	the	file.
• The	owner	and	group	of	a	file	are	changed	only	by	the	chown() and	
chgrp() system	calls	or	their command	equivalents.

40

Size	of	a	File

• Size	of	a file set	to	zero	by	the	creat()	call	and increases	as	data written	to	it	using	
the	write()	system	call.

41

Modication	and	Access	Time

• Every	i-node	maintains	three	timestamps:

st_mtime,	the	time	the	file	was	last	modified
st_ctime,	the	time	the	file	attributes	were	last	modified
st_atime,	the	time	the	file	was	last	read

• These	timestamps	are	set	by	the	kernel	as	the	
file	is	accessed	and	modified.

• Users have	no control	over	st_ctime,	but	can	
change	st_atime and	st_mtimemanually	
using	the	utime() system	call:

#include	<sys/types.h>
#include	<utime.h>
int	utime(const	char	*path,	const	struct	utimbuf	*times);

where	a	utimbuf	is	defined	as

struct	utimbuf	{
time_t	actime;	// access	time
time_t	modtime;	// modification	time
}	;

42

Name	of	a	File

• The	rename() system	call	renames a	file	and	returns	1	on	failure,	0	on	success.

#include	<stdio.h>
int	rename(const	char	*oldname,	const	char	*newname);

• The	behavior	is	complex,	depending	on:
• whether	oldname	refers to	a	file,	a	directory,	or	a	symbolic	link,
• whether	newname	already	exists,
• whether	it	is	on the	same	file	system.	

43

Traversing	the	Tree,	Up	and	Down

• Traversing	Up: Both	the	pwd command	and	getcwd() system	call	travel	from	the	
current	working directory	up	the	tree	so	it	can	display	the	whole	path	from	the	
root	to	the	current	working	directory.

• Traversing	Down: The	find command	and	recursive	versions	of	commands	such	as	
ls,	grep,	chown, chmod, and	many	more,	start	in	the	given directory	and	visit	all	
files	in	the	subtree	rooted	at	that	directory.

44

The	pwd	Command

Suppose	we	have	a	directory	named	scratch:
$	ls	-iaR	scratch

45

725	. 732	stuff

449	.. 727	.

753	temp 725	..

727	test1 729	file1

728	test2 730	file2

731	. 733	garbage

728	.. 728	.

733	junk 729	temp

725	..

731	data

748	srcs

How	pwd	Works

• The	".."	in	a	directory always	contains	the	i-number	of	the	parent	directory; but, the	root	
of	the	file	system has	no	parent,	thus,	in	the	root	directory, "." and	".." have	the same	i-
number.

• This	provides	a	stopping	criterion	for	an	iterative	solution	to	printing	the	pathname.	The	
idea	is to	do	the	following:
1. Record	the	i-number	n	of	the	current	directory, using stat().
2. Change	directory	(chdir())	to	the	parent	directory.
3. Compare	the	i-number	of	the	parent	directory	(now	the	current	directory), to	n.	If they	are	

equal, stop.	Otherwise,	find	the	name	of	the	link	with i-number	n (inum_to_name()) and	
append it	to	the	left	of	the	current	pathname,	and	append	a	"/"	to the	left	of	that,	and	go	
back	to	step	1.

4. Print	the	current	pathname.

You	can	find	code	example	for	pwd.v1	in	the	Book	Chapter	3.
46

Duplicate	I-node	Numbers	and	Cross-Device	Links

• If	another	FS	mounted	in	the	tree,	taking	i-node	numbers	alone	will	cause	errors.
• The	kernel	must	deal	with	many	files	with	possibly	the	same	i-number,	since	i-
numbers	are	unique	only	within	a	single	FS.
• On	all	modern	UNIX	systems,	the i-node	contains	a	member	that	stores	the	name	
of	the	device	on	which	it	is	located.
• Therefore, kernel	can	distinguish	i-nodes	by	the	name	of	the	device	they	are	
located on.
• stat() system	call	can	be	used	to	read	device_id.

You	can	find	code	example	for	pwd.v2	in	the	Book	Chapter	3.

47

Symbolic	Links

• FSs depend	on	the	uniqueness	of	i-numbers
• However, a	user may	need	to	make	links,	even	if	they	span	FSs.
• Most	UNIX	systems	provide files	called symbolic	links (or soft	links).
• A	symbolic	link	contains	a	reference	to	the	name	of	the	file	which	it	links.
• The	symlink() system	call	(and	the	command	ln	s) creates	a	symbolic	link	instead	
of	a	hard	link.

48

Symbolic	Links

• The	following	system	calls	are	related	to	the	use	of	symbolic	links.

• #include	<unistd.h>
• int	symlink(const	char	*oldpath,	const	char	*newpath);
• int	readlink(const	char	*path,	char	*buf,	size_t	bufsiz);
• int	lstat(const	char	*file_name,	struct	stat	*buf);

• The	symlink() creates	symbolic	links.
• The	readlink() obtains	name of the file	a	symbolic	link	is	pointing.
• The	lstat() obtains	a	stat	structure	for	a	file that	is	a	link itself.

49

Tree	Walks

• Four	different ways	to	visit	all	nodes	in	a	subtree:

• Custom	recursive	function,
• Custom	non-recursive	function,
• nftw() POSIX	library	function;
• fts() function	in	systems	including	the	4.4BSD	API.

50

Tree	Walks

• grep,	chmod,	chown,	rm,	cp,	and	chgrp use	fts()	to	perform	their	
recursive	tree	traversals.
• The	GNU	version	of	the	ls	command,	uses	internal	stacks	and	queues	
to	recurse the	tree.
• The	GNU	find	command	uses	mutually	recursive	functions	whereas	
the	versions	on	BSD	systems	use	the	fts()	functions.

51

52

Thanks…

53

