
SYSTEM	PROGRAMMING
From	the	book	by	STEWART	WEISS

1

Chapter	04
Control	of	Disk	and	Terminal	I/O

2

Concepts Covered

• File	structure	table
• Open	file	table,
• File	status	flags,
• Auto-appending,
• Device	files,	Terminal	devices,
• Device	drivers,	Line	discipline,
• termios structure,
• Terminal	settings,

• Canonical	mode,	non-canonical	
modes,
• IOCTLs,
• fcntl,	ttyname,	isatty,	ctermid,
getlogin,	gethostname, tcgetattr,
tcsetattr, tcush,	tcdrain,	ioctl,

3

Files	and	Disk	Control:	Open	Files

• open() system	call returns a file	descriptor
• fopen() C	standard	I/O	library	call returns a	FILE	pointer.
• Either	way,	a	scalar	object	(i.e.,	a	small	integer	or	a	pointer) returned.
• It is	associated	with a	kernel	data	structure	that	allows	access	to	the	file.
• Aside	from	the	file	pointer,	the	information it	contains:
• whether	the	file	is	open	for	reading,	writing	or	appending,
• whether	the	I/O	is	buffered or	unbuffered,
• whether	the	access	is	exclusive	or	other	processes	also	access	the	file.
• and some other	information	required	by	the	kernel.

4

Files and Disk	Control:	Open	Files

• Many	attributes	of	the	connection	can	be	changed	by	the	process.
• Each	process	has	a	table	called	the	open	file	table.
• In	Linux,	this	table	is	the	fd array,	which	is	part	of	a larger	structure	
called	the	files_struct.
• The	file	descriptor	returned	by	the	open() system	call	is actually	an	
index	into	the	open	file	table	of	the	process	making	the	call.

5

Files and Disk	Control:	Open	Files

Recall	that	every	process	is given	
three	file	descriptors	when	it	is	
created:
0:	standard	input
1:	standard	output
2:	standard	error.
These	are	the	first three	indices	in	
this	table,	as	shown	in	Figure	4.1.

6

Using	fcntl() to	Control	FD	Attributes

• The	file	structure	contains	a	set	of	flags that	control	I/O	with	respect	to	the	file.
• These	flags are called	file	status	flags,	and	they	are	shared	by	all	processes	that	
share	that	file	structure
• To	modify	the	flags	of	an	existing	file	structure:

1. The	process	gets	a	copy	of	the	current	attributes	of	the	connection	from	the	kernel;
2. The	process	modifies the	current	attributes	in	its	copy;
3. The	process	requests	the	kernel	to	write	its	copy	back	to	the	kernel's	copy.

• fcntl()	a	function	that	operates	on	open	files	and	performs	steps	1	and	3

#include <unistd.h>
#include <fcntl.h>
int fcntl(int fd, int cmd, … /* arg */);

7

Parameters	to	fcntl()

• The	first	parameter	is	the	file	descriptor	of	an	already	open	file.

• The	second	parameter	is	an	integer	that	fcntl() interprets	as	a	command.
• Names	for	these integers	are	defined	in	<fcntl.h>

• F_GETFL	returns	a	copy	of	the	set	of	flags;
• F_SETFL	tells	fcntl()	to	expect	a	third	integer	parameter	that	contains	a	new flag	set	to	replace	the	
current	one.

• Each	control	flag	is	a	single	bit	in	a	long	integer.	To	turn	on	an	attribute,	you	need	to	set the	bit.	To	
turn	it	off,	you	need	to	zero	it.

• The	<fcntl.h>	header	file	contains	definitions	of masks	that	can	be	used	for	this	purpose.
• The	masks	are	defined	in	/usr/include/bits/fcntl.h, which	is	included	in	the	<fcntl.h>	header	file.

8

• The flags that	can	be	changed	after	a	file	has	already	been	opened	are	a	
subset	of	the	file	status	flags. Some of	them are:
• O_APPEND	Append	mode.
• O_ASYNC	Asynchronous	writes.	Generate	a	signal	when	input	or	output	
becomes	possible	on this	file	descriptor.	This	feature	is	only	available	for	
terminals,	pseudo-terminals,	and sockets,	not	for	disk	files!
• O_SYNC	Synchronous	I/O.	Any	writes	on	the	file	descriptor	will	block	the	
calling	process	until the	data	has	been	physically	written	to	the	underlying	
hardware.
• O_NONBLOCK	or	O_NDELAY	Non-blocking	mode.	No	subsequent	
operations	on	the	file	descriptor	will cause	the	calling	process	to	wait.	This	
is	strictly	for	FIFOs	(also	known	as	named pipes).

9

Setting	Flags	Using	fcntl()

int flags, result;

flags = fcntl(fd, F_GETFL);

flags |= (O_APPEND);

result = fcntl(fd, F_SETFL, flags);

if (-1 == result)

perror("Error setting O_APPEND");

return 0;

int flags, result;

flags = fcntl(fd, F_GETFL);

flags &= ~(O_APPEND);

result = fcntl(fd, F_SETFL, flags);

if (-1 == result)

perror ("Error unsetting O_APPEND");

return 0;

10

Controlling	the	Connection	When	Opening	a	File

• One	can	open	the	file	with	the	desired	attributes	in	the	first	place.
• These	attributes	can	be	passed as	parameters	in	the	open()	system	
call,	by	bitwise-or-ing them	in	the	second	argument	to	the	call.
• For	example,	to	open	a	file	with	name	‘foobar’	with	the	write-only,	
auto-append,	and	synchronous I/O	bits	set,	you	would	write:

fd = open(foobar, O_WRONLY | O_APPEND | O_SYNC);

11

Possible	Combinations of	Flags

12

flags If	the	file	exists If	the	file	does	not	exist

0 Opens	for	writing	and	sets pointer	to	first	byte Fails

O_CREAT Opens	for	writing	and	sets pointer	to	first	byte Creates	file

O_EXCL Opens	for	writing	and	sets pointer	to	first	byte Fails

O_TRUNC Opens	for	writing	and	zeroes its	contents Fails

O_CREAT	|	O_EXCL Fails Creates	file

O_CREAT	|	O_TRUNC Opens	for	writing	and	zeroes its	contents Creates	file

O_TRUNC	|	O_EXCL Opens	for	writing	and	zeroes its	contents Fails

O_CREAT	|	O_TRUNC	|	O_EXCL Fails Creates file

Device	Files

• Every	logical	and	physical	devices	associated	with	a	device	special	file
• Logical	devices	are	abstractions	of	real	physical	devices.
• Conventionally,	all	device	files	located	in	the	/dev	directory.

13

Accessing	Devices	Via	Device	Files

• To	write	a	message	to	the	terminal	device	/dev/pts/4,	if	permissions	allow:

$echo	"Where	are	you?"	>	/dev/pts/4

• tty displays the absolute pathname of the device file representing the terminal from
which the command issued:

$	tty
/dev/pts/4

• The	library	function	ttyname() returns	pathname	of	the	terminal	device.
• The	ctermid() standard	I/O	library	function	displays pathname	of	the	controlling	terminal.

14

Accessing	Devices	Via	Device	Files

#include <stdio.h>
#include <unistd.h>

int main () {
if (isatty(0))
printf("%s\n", ttyname(0));

else
printf("not a terminal\n");

return 0;
}

• This	program	outputs:

$	mytty
/dev/pts/1

• When	input	is	redirected:

• $	ls	|	mytty
• not	a	terminal

15

Device	Drivers	and	the	/dev	Directory

• In	the	/dev directory, ls	–l	outputs:

total	0
crw-rw---- 1	root	root	4,	0	 Feb	6	11:07	tty0
crw------- 1	root	root	4,	1	 Feb	6	16:09	tty1
crw-rw---- 1	root	tty 4,	10	Feb	6	11:07	tty10
crw-rw---- 1	root	tty 4,	11	Feb	6	11:07	tty11
crw-rw---- 1	root	tty 4,	12	Feb	6	11:07	tty12
crw-rw---- 1	root	tty 4,	13	Feb	6	11:07	tty13
crw-rw---- 1	root	tty 4,	14	Feb	6	11:07	tty14

16

Device	Drivers	and	the	/dev	Directory

• In	the	/dev/pts directory,	ls	–l	outputs:

total 0
crw--w---- 1	root tty 136,	1	Oct 14	14:46	1
crw--w---- 1	lsmarque tty 136,	10	Sep 12	13:13	10
crw--w---- 1	lsmarque tty 136,	11	Sep 12	18:39	11
crw--w---- 1	chays tty 136,	12	Sep 13	20:02	12
crw--w---- 1	chays tty 136,	13	Sep 13	20:02	13
crw--w---- 1	lsmarque tty 136,	14	Oct 3	13:22	14
crw--w---- 1	lsmarque tty 136,	15	Sep 12	13:13	15
crw--w---- 1	shixon tty 136,	19	Oct 14	15:19	19
crw--w---- 1	sweiss tty 136,	20	Oct 14	15:23	20

17

Device	Drivers	and	the	/dev	Directory

• The	c indicates	this	is	a	character	device
• size field	consists	of	a	pair	of	numbers.
• The	first	and	second	numbers	are	the	major	and	minor	device	numbers.
• For	example,	/dev/pts/12 has	major	device	number	136	and	minor	device	
number	12.
• The	major	device	number	identifies	the	type	of	device,	e.g.,	SCSI	disk,	
pseudo-terminal,	or	mouse.
• The	minor	device	number	specifies	the	particular	instance	of	this	type	of	
device	represented	by	the	file,	or	the	action	associated	with	this	particular	
interface	to	the	device.

18

Pseudo-Terminals

• A	terminal	is	a	hardware	device	that	emulates	the	old	Teletype	machines.
• Terminals connected	to	computers via	RS-232	lines,	into	terminal	multiplexers
• Computers had	device	drivers	to	communicate	with	multiplexed	terminals.
• The	terminal	drivers had	to	control	all	aspects	of	the	communication	path,	such	
as modem	control,	hardware	flow	control,	echoing	of	characters,	buffering	of	
characters,	and	so	on.

19

Pseudo-Terminals

• A	pseudo-terminal	is	a	software-emulated	terminal.
• A	terminal	window	opened	in	a	desktop	environment	such	as	
Gnome/KDE,	or	an	SSH	client window are pseudo-terminals.
• Device	files	in	the	/dev directory	that	have	names	of	the	form	pts* or	
pty*	are	pseudo-terminal	device	files.
• The	device	drivers	for	these	files	manage	pseudo-terminals.

20

Character	I/O	Interfaces

• Character	device	drivers	do	not	use	system	buffers,	except	for	
terminal	drivers,	which	use	a	linked	list	of	very	small	(typically	64	
byte)	buffers.
• Character	device	drivers	transfer	characters	directly	to	or	from	the	
user	process's	virtual	address	space.

21

Writing	to	a	Device	File

• As	an	exercise	in	writing	to	a	device	file,	a	simplified	version	of	the
write	command coded.
• The	write	command	writes	messages	to	terminals.	
• Please	refer	to	section	4.3.8	of	the	book	for	the	code	example.

22

Terminals	and	Terminal	I/O

• Why	we	press	‘Enter’ key	to	send the	typed	characters	to a	program?
• Can	a program	suppress	echoing	of	characters	as	they	are	typed?
• Can programs	time-out	while	waiting	for	user	input?
• Can	programs	override	control	sequences	such	as	Ctrl-D	and	Ctrl-C?
(‘vi’ and	‘emacs’	does!)
• Can	a	program	get	terminals’	row	and	column	numbers dynamically	
and	control	how	it	wraps	its	output?
• Sometimes	the	‘backspace’ key and	sometimes	the	‘delete’ key	erases	
characters,	and	sometimes	neither	does.	How?

23

General	Case:	copychars

#include <string.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
char inbuf;
char prompt[] = "Type any characters followed by the 'Enter' key."

"Use Ctrl-D to exit.\n";

if (-1 == write(1, prompt, strlen(prompt))) {
write(1, "write failed\n", 13);
exit(1);

}

while (read(0, &inbuf, 1) > 0)
write(1, &inbuf, 1);

return 0;
}

24

The	Problem

• In	this	program, although	the	main	loop	reads	a	single	character	and	
immediately	writes	that	character,	nothing	gets	written	on	the	screen	
until	‘Enter’ key	gets	pressed.
• This	is	not	due	to C	Library's	streams doing	buffering.
• The	terminal	is	responsible	for	this.
• Somehow	the	characters	typed are	stored,	but	where,	and	how	many	
can	be	stored	before	they	are	lost?

25

The	Solution

$	stty -icanon;	copychars
$	stty icanon

• Once a	character typed,	it	immediately	gets	echoed	on	the	screen.
• The	stty command	allows	us	to	control	terminal	characteristics.
• The	commands above	disabled	buffering	of	input	characters	in	the	
terminal.
• But,	editing	characters	also seems	to	be	disabled.

26

Explanations

• The	terminal	driver	pre-processes characters it	receives	(from	the	
keyboard) and	it sends	(to	the	display	device).
• By	default, a	terminal	assembles the	input	into	lines,	processes special	
characters	such	as	backspace,	and	delivers the	input	lines	to	the	process.
• This	mode	of	operation	called	canonical	input	mode.
• Terminals	can	be	operated	in	various	non-canonical	input	modes	as	well.
• In	non-canonical	modes,	some	part	of	this	processing	is	turned	off.
• Programs	like	‘emacs’,	‘vi’,	‘less’ put	the	terminal	into	non-canonical	mode.

27

Terminal	Devices:	An	Overview

• A	terminal	driver	controls	the	behavior	of	a	terminal	device,	and	it consists	
of:
• Terminal	device	driver.
• Line	discipline.

• The	terminal	device	driver	is	a	part	of	the	kernel
• It	transfers characters	to	and	from	the	terminal	device
• It	talks	directly	with	the	hardware	at	one	end,	and	the	line	discipline	at	the	
other.
• The	line	discipline	does	the	processing	of	input	and	output.
• It	maintains	an	input	queue	and	an	output	queue	for	the	terminal as
illustrated	in	Figure	4.3.

28

Figure	4.3:	The	Terminal	Driver

29

The	Terminal	Driver:	Input	/Output	Queues

• When	‘echo’ is	on,	characters	are	copied	from	the	input	queue	to	the	
output	queue.
• The	size	of	the	input	queue	is	MAX_INPUT which is	defined	in	
<limits.h>.
• If	the input queue	fills,	UNIX	discards any	extra	characters.
• If the output queue	fills, the	kernel	blocks the writing process	until	
the	queue	has	more	room.

30

Canonical	Input	Queue

• Another	queue	which	is	not	shown in	the	Figure	4.3 is	the	canonical	input	
queue.
• The	canonical	processing	center	is	part	of	the	line	discipline.
• The	line	discipline	uses	an	internal	data	structure	to	control	the	terminal.
• The	kernel	provides	an	interface	to	access	this	structure,	and	UNIX	provides	
a	command,	stty,	to	access	and	modify	attributes	of	the	terminal	stored	in	
this	structure.
• The	name	of	the	interface	to	this	structure,	in	POSIX.1	compliant	systems,	
is	the	termios struct.
• Almost	all	of	the	terminal	device	characteristics	that	can	be	examined	and	
changed	are	contained	in	this	termios structure,	which	is	defined	in	the	
header	file	<termios.h>.	That	structure	is	a	collection	of	four	flagsets,	and	
an	array	of	character	codes.

31

The	stty Command

$	stty -a

speed 38400	baud;	rows 24; columns 80; line =	0;

cchars: intr	=	^C;	quit	=	^\;	erase	=	^?;	kill	=	^U;	eof	=	^D; eol	=	M-^?;	eol2	=	M-^?;	start	=	^Q;	stop	=	^S;	susp =	
^Z; rprnt	=	^R;	werase =	^W;	lnext =	^V;	flush	=	^O; min	=	1;	time	=	0;

control	flags: -parenb -parodd cs8	-hupcl -cstopb cread -clocal	-crtscts
input	flags: -ignbrk -brkint -ignpar -parmrk -inpck –istrip -inlcr	-igncr icrnl ixon -ixoff -iuclc ixany imaxbel

output	flags: opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel	nl0	cr0	tab0	bs0	vt0	ff0

local	flags: isig icanon iexten echo	echoe echok -echonl -noflsh -xcase	-tostop -echoprt echoctl echoke

32

The	stty Command

$	stty erase	x
$	stty erase	^H
$	stty -echo
$	stty --file=/dev/pts/2	echo

• To	restore	your	settings:
$	reset

33

The	‘stty’ Controls	Terminal	Settings
• Special	Characters used	by	the	driver	to	cause	specific	actions	to	take	place,	such	as	sending	signals	to	the	
process,	or	erasing	characters	or	words	or	lines.	Signal	characters	include	Ctrl-C,	the	interrupt	signal,	and	
Ctrl-\,	the	quit	signal.

• Special	Settings control	the	terminal	in	general,	e.g., its	I/O speeds	and	dimensions,	the	rows,	cols,	min,	and	
time	values.

• Input	Settings process	characters	coming	from	the	terminal.	Changing	case,	converting	carriage	returns	to	
newlines,	and	ignoring	various	characters	like	breaks	and	carriage	returns.

• Output	Settings process characters	sent	to	the	terminal.	Replacing	tab	characters	by	spaces,	converting	
newlines	to	carriage	returns,	carriage	returns	to	newlines,	and	changing	case.

• Control	Settings control	character	representation	such	as	parity	and	stop	bits,	hardware	flow	control.
• Local	Settings control	how	the	driver	stores	and	processes	characters	internally such	as echo,	processing	
erase	and	line-kill	characters.

• Combination	Settings define	modes	such	as	cooked	mode	or	raw	mode.

34

Canonical	vs	Non-Canonical	Mode

• In	canonical	mode,	typed	
characters	are	processed	and	
placed	into	the	canonical	input	
queue.

• To	turn-off	canonical	mode:
• $	stty	-icanon

• In non-canonical	mode,	they	are	
delivered	to	the	read()	system	
call	directly.

• To	turn-on	canonical	mode:
• $	stty	icanon

35

Programming	the	Terminal	Driver
• The	stty command	modify	terminal	settings	
from	the	shell

• To	control	the	terminal	settings	in	code,	use	
the	following	POSIX	compatible	system	calls:

• tcgetattr() and	tcsetattr() gets and	sets driver	
attributes.

• cfgetispeed() gets	input	speed
• cfgetospeed() gets	output	speed
• cfsetispeed() sets	input	speed
• cfsetospeed() sets	output	speed
• tcdrain() waits	for	all	output	to	be	transmitted
• tcflow() suspends	transmission
• tcflush() ushes	input	and/or	output	queues

• tcsendbreak() sends	a	break	character
• tcgetpgrp() gets	foreground	process	groupid
• tcsetpgrp() sets	foreground	process	groupid
• tcgetsid() gets	process	group	ID	of	session	
leader	for	control	of	tty

• Some	of	these	functions	act	on	the	line	
discipline;	others	act	on	the	device	driver	
settings.

• There	is	an	alternative function:
• ioctl() can	be	used	for	controlling	terminal
settings,	but	it	is	not	supported	by	the	
standard.

• The	ioctl() function	is	necessary	for	
controlling	devices	other	than	terminals.

36

Modifying	Terminal	Attributes

• Retrieve	the	current	settings	to	a	termios structure,	using	tcgetattr(),
• Modify	that	structure	locally,
• Write	it	back	to	the	driver	using	the	tcsetattr()	call.

#include <termios.h>
#include <unistd.h>
int tcgetattr(int fd, struct termios termios_p);
int tcsetattr(int fd, int optional_actions, struct termios termios_p);

37

The	termios Structure

struct termios
{

tcflag_t c_iflag; // input mode flags
tcflag_t c_oflag; // output mode flags
tcflag_t c_cflag; // control mode flags
tcflag_t c_lflag; // local mode flags
cc_t c_line; // line discipline
cc_t c_cc[NCCS]; // control characters
speed_t c_ispeed; // input speed
speed_t c_ospeed; // output speed

}

38

c_iflag c_oflag c_cflag c_lflag

IGNBRK OPOST CSIZE ISIG

BRKINT ONLCR CSTOPB ICANON

IGNPAR OLCUC CREAD ECHO

PARMRK OCRNL PARENB ECHOE

INPCK ONLRET PARODD ECHOK

ISTRIP OFILL HUPCL ECHONL

INLCR OFDEL CLOCAL NOFLSH

IGNCR NLDLY CRTSCTS TOSTOP

ICRNL CRDLY CIBAUD ECHOCTL

IUCLC TABDLY PAREXT ECHOPRT

IXON BSDLY CBAUDEXT ECHOKE

IXANY FFDLY DEFECHO

IXOFF VTDLY FLUSHO

IMAXBEL PENDIN

IUTF8
39

FLAG	MASKS
• The	header	file defines	masks (see	Figure	4.4) for	

each individual	bits of tcflag_t.

• The	c_iflag contains	input	processing	flags.

• The	c_oflag contains	output	processing	flags.

• The	c_cflag has control characteristics flags.

• The	c_lflag has	flags	that	define	how	characters	are	
processed	internally	in	the	driver.

• The	c_cc array	stores	control	character	
assignments.

• This	is	where	the	map	of	erase	key,	backspace	key,	
and	so	on,	is	stored.

Modify	Single	Bits	of	Flagsets

• MASK	represents	an	arbitrary bit	mask:

if (flagset & MASK) //tests the masked bit
flagset |= MASK // sets the masked bit
flagset &= ~MASK //clears the masked bit

• For	example,	to	turn	off terminal	echo:
flagset = flagset & ~ECHO;

40

Turn	echo off

#include <stdio.h>
#include <stdlib.h>
#include <termios.h>

int main (int argc, char* argv[]) {
struct termios info, orig;
char username[33];
char passwd[33];
FILE* fp;

// get a FILE* to the control termina l -- don't
assume stdin

if ((fp = fopen(ctermid(NULL), " r+")) == NULL)
return (1);

printf("login:"); // display message
fgets(username, 32, stdin); // get user's typing

// Now turn off echo
tcgetattr(fileno(fp), &info); // Get current terminal state
orig = info; // Save a copy of it
info.c_lflag &= ~ECHO; // Turn off echo bit
tcsetattr(fileno(fp), TCSANOW, &info); // Use this state in line

discipline

printf("password: ");
fgets(passwd, 32, stdin); // Get user 's non-echoed typing

tcsetattr(fileno(fp), TCSANOW, &orig); // Restore saved settings
printf("\n"); // Print a fake message
printf("Last login: Tue Apr 31 21:29:54 2088 from the twilight

zone.\n");
return 0;

}

41

I/O	Control	Using	ioctl()

• The tcgetattr() call accesses terminal driver attributes.
• Although most operations on devices can be achieved with the
tcgetattr() & tcsetattr(), most devices also have some device-specific
operations that do not fit into the general model.
• UNIX provides a more general-purpose device-control system call:
• ioctl() can be used to access and control any I/O device which has a
device driver.

42

I/O	Control	Using	ioctl() "Setecho"	example

int main (int argc, char* argv []) {
struct termios info;
FILE* fp;

if (argc < 2) {
printf("usage: %s [y|n]\n", argv[0]);
exit(1);

}

if ((fp = fopen(ctermid(NULL), "r+")) == NULL)
return (1);

// retrieve termios struct
if (ioctl(fileno(fp), TCGETS, &info) == -1)

die("ioctl", "1");

if ('y' == argv[1][0])
info.c_lflag |= ECHO;

else
info.c_lflag &= ~ECHO;

// replace termios with the modified copy
if (ioctl(fileno(fp), TCSETS, &info) == -1)

die("ioctl", "2");
return 0;

}

43

Thanks…

44

