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Chapter 07
Process Architecture and Control
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Concepts Covered

• Signals (From Chapter 05)
• Process creation
• Process synchronization

• nohup, pgrep, ps, psg
• sigaction, sigprocmask, kill, 

raise, atexit, fork, execve, exit, 
on_exit, wait, waitpid, waitid
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Signals

• Signals are software interrupts.
• They are a mechanism for handling asynchronous events, such as Ctrl-

C at a terminal.
• Most applications need to handle signals.
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Sources of Signals

• The terminal
• Hardware
• Software
• Processes

• The header file <signal.h> contains signal definitions.
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Signal Types
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Sending Signals

• A process can send a signal to another process using:

• int kill(int processid, int signal);
• kill(942, SIGTERM);

• A process can also send a signal to itself using:

• int raise(int signal);

• which is equivalent to

• kill(getpid(), signal);
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Signal Handling

• A process can choose to respond all signals differently except for 
SIGKILL and SIGSTOP.

• SIGKILL and SIGSTOP always terminate the process.
• To handle a signal, the programmer defines a function called a signal 

handler.
• The signal handler is executed when the signal is received.
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The sigaction() call

• The sigaction() system call allows a process to register a signal handler and to 
specify how it will respond to multiple arriving signals.

• #include <signal.h>
• int sigaction(int signum, const struct sigaction* act, struct sigaction* oldaction);

• where
• signum is the value of the signal to be handled,
• act is a pointer to a sigaction structure that specifies the handler, masks, and flags 

for the signal
• oldact is a pointer to a structure to hold the currently active sigaction data.
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The sigaction Structure

struct sigaction { // POSIX compliant, new-style handler
// pointer to signal handler
void (*sa_sigaction) (int, siginfo_t *, void *);
sigset_t sa_mask; // additional signals to block
// during handling of the signal
int sa_flags; // flags that affect behavior

};
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Example

#include <unistd.h>

#include <sys/types.h>

#include <signal.h>

#include <bits/siginfo.h>

#include <stdio.h>

#include <stdlib.h>

void sig_handler(int signo, siginfo_t* info, void* context) {

printf("Signal number: %d\n", info->si_signo);

printf("Error number: %d\n", info->si_errno);

printf("PID of sender: %d\n", info->si_pid);

printf("UID of sender: %d\n", info->si_uid);

exit(1);

}
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Example

int main(int argc, char* argv[]) {
struct sigaction the_action;
the_action.sa_flags = SA_SIGINFO;
the_action.sa_sigaction = sig_handler;
sigaction(SIGINT, &the_action, NULL);
printf("Type Ctrl-C wi thin the next minute or send signal 2.\n");
sleep(60);
return 0;

}
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Blocking Signals Temporarily: sigprocmask() 

• The sigprocmask() system call can block or unblock signals sent to a 
process.

• This is useful if you need to temporarily turn off all signals in a small 
section of code.

• It does not prevent the kernel from preempting the process and 
letting another process run on the CPU.

• It allows the process to complete some critical sequence of 
statements without any signal handlers running in the middle, and 
without being terminated in the middle.
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Blocking Signals Temporarily: sigprocmask() 

• The prototype is:

• int sigprocmask(int how, const sigset_t *sigs, sigset_t *prev);

• where how is one of SIG_BLOCK, SIG_UNBLOCK, or SIG_SETMASK.
• SIG_BLOCK will block the specified signal set.
• SIG_UNBLOCK allows the signals in the set to be unblocked.
• SIG_SETMASK is used to change the mask completely, i.e., assign a 

new mask to the procmask.
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Processes

• A process is defined to be a program in execution.
• A program such as the bash can have many instances running on a 

machine
• Each individual instance is a separate and distinct process.
• Each and every instance is executing the same executable file.
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Examining Processes on the Command Line

• ps gives list of running and zombie
processes:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
sweiss 2508 2507 0 12:09 pts/8 
00:00:00 -bash
sweiss 3132 2508 0 12:22 pts/8 
00:00:00 ps –f

• pgrep gives the process id of a 
command or program that is running:

$ pgrep bash
2508
3502
3621
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Process Groups

• UNIX systems allow processes to be placed into groups.

• It is useful, for example:

• A signal can be sent to an entire process group rather than a single 
process.
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Foreground and Background Processes

• Processes invoked from a shell command line are foreground
processes

• They may be placed into the background by appending an '&' to the 
command line.

• A background process can run even after a logout, by using the nohup
command, so it will ignore SIGHUP signals, as in:

• $ nohup do_backup &
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Sessions

• When a user logs on, the kernel;
• Creates a session,
• Places all processes and process groups of that user into the session,
• Links the session to the terminal as its controlling terminal.

• Every session has a unique session-id of type pid_t.
• The primary purpose of sessions is to organize processes around their 

controlling terminals.
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The Memory
Architecture of
a Process
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Creating New Processes Using fork

• All processes are created with fork():

#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);

pid_t processid = fork();

causes the kernel to create a new process that is almost an exact copy of the 
calling process.
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Creating New Processes Using fork

processid = fork();
if (processid == 0)

// child's code here
else

// parent's code here
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Synchronizing Processes with Signals

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>

void c_action(int signum) {
/*nothing to do here*/
}

int main(int argc, char* argv[]) { 
pid_t pid;
int status;
static struct sigaction childAct;

switch (pid = fork()) {
case - 1:

perror ("fork() failed!");
exit(1);
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Synchronizing Processes with Signals

case 0: {
/*child executes this branch, set SIGUSR1 action for child*/
int i, x = 1;
childAct.sa_handler = c_action;
sigaction(SIGUSR1, &childAct, NULL);
pause();
printf("Child: starting computation... \n");
for(i = 0; i < 10; i++) {
printf("2^%d = %d\n", i, x);
x = 2*x;

}
exit(0);

}
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Synchronizing Processes with Signals

default:
/*parent code*/
printf("Parent process: Will wait 2 seconds to prove child waits.\n");
sleep(2); /*to prove that child waits for signal*/
printf("Parent process: Sending child notice to start computation.\n");
kill(pid, SIGUSR1);
/*parent waits for child to return here*/
if ((pid = wait(&status)) == -1) {
perror("wait failed");
exit(2);

}
printf("Parent process: child terminated.\n");
exit(0);

}
}
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Executing Programs: The exec family

#include <unistd.h>
int execve(const char* filename, char* const argv[], char* const envp[]);

• execve() executes the program pointed to by its first argument. 
• The filename must be a binary executable or a script whose first line 

is #! interpreter [optional-arg]
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Executing Programs: The exec family

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

The fprintf() statement will only
be executed if the execve() call
fails; execve() returns only when
it fail to run.

int main(int argc, char* argv[], char* envp []) {
if (argc < 2) {

printf("usage: execdemo1 arg1 [arg2 ...]\n");
exit(1);

}

execve("/bin/echo", argv, envp);
fprintf(stderr, "execve() failed to run.\n");

exit(1);
}
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Synchronizing Parents and Children: wait and exit

#include <stdlib.h>
void exit(int status);

• Three actions take place when exit() is called:

1. The process's registered exit functions run;
2. The system gets a chance to clean up after the process;
3. The process gets a chance to have a status value delivered to its parent.
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Registering exit Functions

• Programmers can register a function to run when a process calls exit() 
using either atexit() or on_exit().
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Waiting for Children to Terminate

• After a process forks a child, how will it know if and when the child 
has finished its task?

• A process has to wait until the child or children finish their tasks 
before it can continue.
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The wait() family of calls

• There are three different POSIX-compliant wait() system calls

#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *status);
pid_t waitpid(pid_t pid, int* status, int options);
int waitid(idtype_t idtype, id_t id, siginfo_t* infop, int options);

• These system calls;
• delay the parent until a child has terminated,
• obtain the status of a child that has terminated.
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Example for wait()

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/wait.h>

#include <signal.h>

void child() {

int exit_code;

printf("I am the child. My pid: %d.\n", getpid());

sleep(2);

printf("Enter a value for the child exit code:\n");

scanf("%d", &exit_code);

exit(exit_code);

}
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Example for wait()

int main(int argc, char* argv[]) {
int pid, status;
printf("Starting up... \n");
if (-1 == (pid = fork())) {
perror("fork"); exit(1);

}
else if (0 == pid)
child();

else { /*parent code*/
printf("My child has pid %d and my pid is %d.\n", pid, getpid());
if ((pid = wait(&status)) == -1) {
perror("wait failed"); exit(2);

}
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Example for wait()

if (WIFEXITED(status)) { /*low order byte of status equals 0 */
printf("Parent: Child %d exited with status %d.\n",

pid, WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("Parent: Child %d exited with err. code %d.\n",

pid, WTERMSIG(status));
#ifdef WCOREDUMP

if (WCOREDUMP(status))
printf("Parent: A core dump took place.\n");

#endif
}

}
return 0;

}
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Using waitpid()

• The waitpid() function has three parameters:

• The process-id of the child to wait for,
• A pointer to the variable in which to store the status,
• An optional set of flags.
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Non-blocking waits

• Instead of calling wait() or waitpid(), a process can establish a 
SIGCHLD handler that will run when a child terminates.

• The SIGCHLD handler can then call wait().

• This frees the process from having to poll the wait() function.
• It only calls wait() when it is guaranteed to succeed.

• Check Listing 7.13 for example code!
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Thanks…
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