
SYSTEM PROGRAMMING
From the book by STEWART WEISS

1



Chapter 07
Process Architecture and Control

2



Concepts Covered

• Signals (From Chapter 05)
• Process creation
• Process synchronization

• nohup, pgrep, ps, psg
• sigaction, sigprocmask, kill, 

raise, atexit, fork, execve, exit, 
on_exit, wait, waitpid, waitid

3



Signals

• Signals are software interrupts.
• They are a mechanism for handling asynchronous events, such as Ctrl-

C at a terminal.
• Most applications need to handle signals.

4



Sources of Signals

• The terminal
• Hardware
• Software
• Processes

• The header file <signal.h> contains signal definitions.

5



Signal Types

6



Sending Signals

• A process can send a signal to another process using:

• int kill(int processid, int signal);
• kill(942, SIGTERM);

• A process can also send a signal to itself using:

• int raise(int signal);

• which is equivalent to

• kill(getpid(), signal);

7



Signal Handling

• A process can choose to respond all signals differently except for 
SIGKILL and SIGSTOP.

• SIGKILL and SIGSTOP always terminate the process.
• To handle a signal, the programmer defines a function called a signal 

handler.
• The signal handler is executed when the signal is received.

8



The sigaction() call

• The sigaction() system call allows a process to register a signal handler and to 
specify how it will respond to multiple arriving signals.

• #include <signal.h>
• int sigaction(int signum, const struct sigaction* act, struct sigaction* oldaction);

• where
• signum is the value of the signal to be handled,
• act is a pointer to a sigaction structure that specifies the handler, masks, and flags 

for the signal
• oldact is a pointer to a structure to hold the currently active sigaction data.

9



The sigaction Structure

struct sigaction { // POSIX compliant, new-style handler
// pointer to signal handler
void (*sa_sigaction) (int, siginfo_t *, void *);
sigset_t sa_mask; // additional signals to block
// during handling of the signal
int sa_flags; // flags that affect behavior

};

10



Example

#include <unistd.h>

#include <sys/types.h>

#include <signal.h>

#include <bits/siginfo.h>

#include <stdio.h>

#include <stdlib.h>

void sig_handler(int signo, siginfo_t* info, void* context) {

printf("Signal number: %d\n", info->si_signo);

printf("Error number: %d\n", info->si_errno);

printf("PID of sender: %d\n", info->si_pid);

printf("UID of sender: %d\n", info->si_uid);

exit(1);

}

11



Example

int main(int argc, char* argv[]) {
struct sigaction the_action;
the_action.sa_flags = SA_SIGINFO;
the_action.sa_sigaction = sig_handler;
sigaction(SIGINT, &the_action, NULL);
printf("Type Ctrl-C wi thin the next minute or send signal 2.\n");
sleep(60);
return 0;

}

12



Blocking Signals Temporarily: sigprocmask() 

• The sigprocmask() system call can block or unblock signals sent to a 
process.

• This is useful if you need to temporarily turn off all signals in a small 
section of code.

• It does not prevent the kernel from preempting the process and 
letting another process run on the CPU.

• It allows the process to complete some critical sequence of 
statements without any signal handlers running in the middle, and 
without being terminated in the middle.

13



Blocking Signals Temporarily: sigprocmask() 

• The prototype is:

• int sigprocmask(int how, const sigset_t *sigs, sigset_t *prev);

• where how is one of SIG_BLOCK, SIG_UNBLOCK, or SIG_SETMASK.
• SIG_BLOCK will block the specified signal set.
• SIG_UNBLOCK allows the signals in the set to be unblocked.
• SIG_SETMASK is used to change the mask completely, i.e., assign a 

new mask to the procmask.

14



Processes

• A process is defined to be a program in execution.
• A program such as the bash can have many instances running on a 

machine
• Each individual instance is a separate and distinct process.
• Each and every instance is executing the same executable file.

15



Examining Processes on the Command Line

• ps gives list of running and zombie
processes:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
sweiss 2508 2507 0 12:09 pts/8 
00:00:00 -bash
sweiss 3132 2508 0 12:22 pts/8 
00:00:00 ps –f

• pgrep gives the process id of a 
command or program that is running:

$ pgrep bash
2508
3502
3621

16



Process Groups

• UNIX systems allow processes to be placed into groups.

• It is useful, for example:

• A signal can be sent to an entire process group rather than a single 
process.

17



Foreground and Background Processes

• Processes invoked from a shell command line are foreground
processes

• They may be placed into the background by appending an '&' to the 
command line.

• A background process can run even after a logout, by using the nohup
command, so it will ignore SIGHUP signals, as in:

• $ nohup do_backup &

18



Sessions

• When a user logs on, the kernel;
• Creates a session,
• Places all processes and process groups of that user into the session,
• Links the session to the terminal as its controlling terminal.

• Every session has a unique session-id of type pid_t.
• The primary purpose of sessions is to organize processes around their 

controlling terminals.

19



The Memory
Architecture of
a Process

20



Creating New Processes Using fork

• All processes are created with fork():

#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);

pid_t processid = fork();

causes the kernel to create a new process that is almost an exact copy of the 
calling process.

21



Creating New Processes Using fork

processid = fork();
if (processid == 0)

// child's code here
else

// parent's code here

22



Synchronizing Processes with Signals

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>

void c_action(int signum) {
/*nothing to do here*/
}

int main(int argc, char* argv[]) { 
pid_t pid;
int status;
static struct sigaction childAct;

switch (pid = fork()) {
case - 1:

perror ("fork() failed!");
exit(1);

23



Synchronizing Processes with Signals

case 0: {
/*child executes this branch, set SIGUSR1 action for child*/
int i, x = 1;
childAct.sa_handler = c_action;
sigaction(SIGUSR1, &childAct, NULL);
pause();
printf("Child: starting computation... \n");
for(i = 0; i < 10; i++) {
printf("2^%d = %d\n", i, x);
x = 2*x;

}
exit(0);

}

24



Synchronizing Processes with Signals

default:
/*parent code*/
printf("Parent process: Will wait 2 seconds to prove child waits.\n");
sleep(2); /*to prove that child waits for signal*/
printf("Parent process: Sending child notice to start computation.\n");
kill(pid, SIGUSR1);
/*parent waits for child to return here*/
if ((pid = wait(&status)) == -1) {
perror("wait failed");
exit(2);

}
printf("Parent process: child terminated.\n");
exit(0);

}
}

25



Executing Programs: The exec family

#include <unistd.h>
int execve(const char* filename, char* const argv[], char* const envp[]);

• execve() executes the program pointed to by its first argument. 
• The filename must be a binary executable or a script whose first line 

is #! interpreter [optional-arg]

26



Executing Programs: The exec family

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

The fprintf() statement will only
be executed if the execve() call
fails; execve() returns only when
it fail to run.

int main(int argc, char* argv[], char* envp []) {
if (argc < 2) {

printf("usage: execdemo1 arg1 [arg2 ...]\n");
exit(1);

}

execve("/bin/echo", argv, envp);
fprintf(stderr, "execve() failed to run.\n");

exit(1);
}

27



Synchronizing Parents and Children: wait and exit

#include <stdlib.h>
void exit(int status);

• Three actions take place when exit() is called:

1. The process's registered exit functions run;
2. The system gets a chance to clean up after the process;
3. The process gets a chance to have a status value delivered to its parent.

28



Registering exit Functions

• Programmers can register a function to run when a process calls exit() 
using either atexit() or on_exit().

29



Waiting for Children to Terminate

• After a process forks a child, how will it know if and when the child 
has finished its task?

• A process has to wait until the child or children finish their tasks 
before it can continue.

30



The wait() family of calls

• There are three different POSIX-compliant wait() system calls

#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *status);
pid_t waitpid(pid_t pid, int* status, int options);
int waitid(idtype_t idtype, id_t id, siginfo_t* infop, int options);

• These system calls;
• delay the parent until a child has terminated,
• obtain the status of a child that has terminated.

31



Example for wait()

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/wait.h>

#include <signal.h>

void child() {

int exit_code;

printf("I am the child. My pid: %d.\n", getpid());

sleep(2);

printf("Enter a value for the child exit code:\n");

scanf("%d", &exit_code);

exit(exit_code);

}

32



Example for wait()

int main(int argc, char* argv[]) {
int pid, status;
printf("Starting up... \n");
if (-1 == (pid = fork())) {
perror("fork"); exit(1);

}
else if (0 == pid)
child();

else { /*parent code*/
printf("My child has pid %d and my pid is %d.\n", pid, getpid());
if ((pid = wait(&status)) == -1) {
perror("wait failed"); exit(2);

}

33



Example for wait()

if (WIFEXITED(status)) { /*low order byte of status equals 0 */
printf("Parent: Child %d exited with status %d.\n",

pid, WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("Parent: Child %d exited with err. code %d.\n",

pid, WTERMSIG(status));
#ifdef WCOREDUMP

if (WCOREDUMP(status))
printf("Parent: A core dump took place.\n");

#endif
}

}
return 0;

}
34



Using waitpid()

• The waitpid() function has three parameters:

• The process-id of the child to wait for,
• A pointer to the variable in which to store the status,
• An optional set of flags.

35



Non-blocking waits

• Instead of calling wait() or waitpid(), a process can establish a 
SIGCHLD handler that will run when a child terminates.

• The SIGCHLD handler can then call wait().

• This frees the process from having to poll the wait() function.
• It only calls wait() when it is guaranteed to succeed.

• Check Listing 7.13 for example code!

36



Thanks…

37


	SYSTEM PROGRAMMING
	Chapter 07
	Concepts Covered
	Signals
	Sources of Signals
	Signal Types
	Sending Signals
	Signal Handling
	The sigaction() call
	The sigaction Structure
	Example
	Example
	Blocking Signals Temporarily: sigprocmask() 
	Blocking Signals Temporarily: sigprocmask() 
	Processes
	Examining Processes on the Command Line
	Process Groups
	Foreground and Background Processes
	Sessions
	The Memory�Architecture of�a Process
	Creating New Processes Using fork
	Creating New Processes Using fork
	Synchronizing Processes with Signals
	Synchronizing Processes with Signals
	Synchronizing Processes with Signals
	Executing Programs: The exec family
	Executing Programs: The exec family
	Synchronizing Parents and Children: wait and exit
	Registering exit Functions
	Waiting for Children to Terminate
	The wait() family of calls
	Example for wait()
	Example for wait()
	Example for wait()
	Using waitpid()
	Non-blocking waits
	Thanks…

