Graphs

This graph has 4 vertices v_1 , v_2 , v_3 , v_4 and 5 edges e_1 , e_2 , e_3 , e_4 , e_5

Adjacency matrix of graph A :

	V1	V2	V3	V4
V1	0	1	1	1]
V2	1	0	1	0
V3	1	1	0	1
v4	1	0	1	0

Diagraph (directed graph): If the edges have direction it is called **diagraph**

Graph B

Adjacency matrix of a digraph :

 $a_{ij} = \begin{cases} 1 & \text{if graph B has a directed edge } (i, j) \\ 0 & \text{else} \end{cases}$

c.,	~ 100	
п	om	

↓	То-	→V1	V2	V3	V4	
V1		1	0	1	1]
V2		0	0	0	0	
V3		0	1	0	1	
v4		0	0	1	0	

LISTS of GRAPH

incidence lists	Edge incidence lists		
incidence edges	Edge	Endpoints	
e ₁ ,e ₂ ,e ₄	е ₁	V ₁ ,V ₂	
e ₁ ,e ₃	e ₂	V_1, V_4	
e3,e4,e5	e ₃	V_2, V_3	
e ₂ ,e ₅	e ₄	V_1, V_3	
	e ₅	V ₃ ,V ₄	
	incidence lists incidence edges e1,e2,e4 e1,e3 e3,e4,e5 e2,e5	incidence lists incidence edges Edge incidence Edge e1,e2,e4 e1 e1,e3 e2 e3,e4,e5 e3 e2,e5 e4 e5	

Subgraph: A subgraph of a given graph G(V,e) is a graph obtained by deleting some edges and vertices of G(V,e)

Graph M is a subgraph of graph A

Complete Graph: Every vertices of G(V,e) is joined by an edge.

Graph N is a complete graph Graph A, graph M are **sparse(incomplete) graph**

Walk: Random walk from vertex V_K to vertex V_J without any restriction. A walk over V_2 - V_3 - V_4 - V_1 - V_3

If a walk ends at the vertex it started it is called a **closed walk**.

Path: walk from vertex V_K to vertex V_J where a vertex is visited **at most** only once. The above walk V_2 - V_3 - V_4 - V_1 - V_3 is not a path because V_3 is visited more than once.

Cycle: A closed path is called a Cycle.