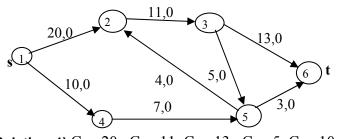
Ford-Fulkerson Algorithm for Maximum Flow

- 1. Assign an initial flow f_{ij} (for instance, f_{ij} =0) for all edges
- 2.Label s by Ø. Mark the other vertices "unlabeled."

3. Find a labeled vertex i that has not yet been scanned . Scan i as follows

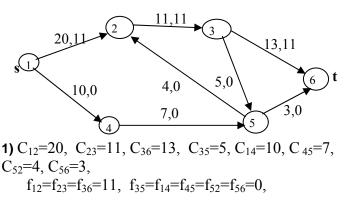

For every unlabeled adjacent vertex j, (**a** or **b** or **c**) **a**) if $C_{ij} > f_{ij}$ and $f_{ij} \ge 0$ compute $\Delta_{ij} = C_{ij} - f_{ij}$ and Δ_j where $\Delta_j = \begin{cases} \Delta ij & \text{if } i = 1 \\ \min(\Delta i, \Delta ij) & \text{if } i > 1 \end{cases}$ Label j with a forward label (i⁺, f_{ij}) **b**) if $C_{ij} > |f_{ij}|$ and $f_{ij} < 0$ (opposite direction) $\Delta_j = \min(\Delta_j, |f_{ij}|)$ Label j with a backward label (i⁻, Δ_j) **c**) if $C_{ij} = f_{ij}$ No operation.

If no unlabeled j exists STOP.

4) Repeat step 3 until t is reached.
[This gives a flow augmenting path P: s ->• t] If it is impossible to reach t then STOP.

- 5). Backtrack the path P, using the labels.
- 6)Using P, augment the existing flow by Δ_t , Set $f = f + \Delta_t$.
- Remove all labels from vertices 2, ..., n. Go to Step 3.

Example: Find the maximum flow from **s** to **t** in the following graph.


Solution 1) $C_{12}=20$, $C_{23}=11$, $C_{36}=13$, $C_{35}=5$, $C_{14}=10$, $C_{45}=7$, $C_{52}=4$, $C_{56}=3$, $f_{12}=f_{23}=f_{36}=f_{35}=f_{14}=f_{45}=f_{52}=f_{56}=0$,

2) vertex 1 (s) is labeled \emptyset , 2,3,4,5,6 are unlabeled 3) Scan 1. i=1 ,Adjacent labels 2 and 4. [j=2 and j=4] $C_{12}=20. f_{12}=0. (perform a)$ For vertex j=2 $\Delta_{12} = C_{12} - f_{12} = 20 - 0 = 20$ $\Delta_2 = \Delta_{12} = 20.$ $L2 = \{1^+, 20\}$ For vertex j=4 $C_{14}=20. f_{14}=0. (perform a)$ $\Delta_{14} = C_{14} - f_{14} = 10 - 0 = 10$ $\Delta_4 = \Delta_{14} = 10.$ $L4 = \{1^+, 10\}$ Scan 2. i=2 ,Adjacent labels 1, 3 and 5. [j=3 and j=5] (j=1 is already labelled) For vertex j=3 $C_{23}=11$. $f_{23}=0$. $\Delta_{23} = C_{23} - f_{23} = 11 - 0 = 11$ $\Delta_3 = \min(\Delta_2, \Delta_{23}) = \min(20, 11) = 11$ $L3 = \{2^+, 11\}$ For vertex j=5, $f_{25} < 0$ (perform b) $\Delta_5 = \min(\Delta_2 - |\mathbf{f}_{25}|) = \min(20,0) = 0$ $L5 = \{2^{-}, 0\}$ Scan 3. i=3 ,Adjacent labels 2, 5 and 6. [j=6] (j=2 and j=5 are already labelled) C₃₆=13. f₃₆=0. $\Delta_{36} = C_{36} - f_{36} = 13 - 0 = 13$ $\Delta_6 = \min(\Delta_3, \Delta_{36}) = \min(11, 13) = 11$ $L6 = \{3^+, 11\}$ Since vertex 6 is t

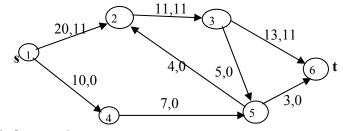
Now all vertices are all labeled Find the path

L6 = {3⁺, 11} → L3 = {2⁺, 11} → L2 = {1⁺, 20} → L1 Thus one augmenting path is 1-2-3-6 Add Δ_t =11 to this path $f_{12(new)} = f_{12(old)} + \Delta_t$ $f_{12} = 0 + 11$ $f_{23} = 0 + 11 = 11$ $f_{36} = 0 + 11 = 11$

Remove all the labels. Start scanning

2) vertex 1 (s) is labeled \emptyset , 2,3,4,5,6 are unlabeled

3) Scan 1. i=1 ,Adjacent labels 2 and 4. [j=2 and j=4] $C_{12}=20. f_{12}=11.$ (perform a) For vertex j=2 $\Delta_{12} = C_{12} - f_{12} = 20 - 11=9$ $\Delta_2 = \Delta_{12} = 9.$ L2 = {1⁺, 9} For vertex j=4 $C_{14}=10. f_{14}=0.$ $\Delta_{14} = C_{14} - f_{14} = 10 - 0=10$ $\Delta_4 = \Delta_{14} = 10.$ L4 = {1⁺, 10}

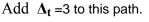

Scan 3. i=3 not labeled no action.

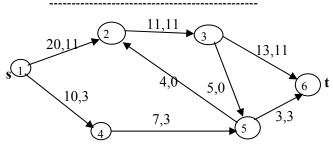
Scan 4. i=4 No action Adjacent labels 1, 5. [j=1, j=5 are already labeled]
Scan 5. i=5 Adjacent labels 2,3,6,4 [j=3, j=6] (j=2 j=4 are already labelled)
For vertex j=3 (reverse dir. perform b)

 $\Delta_{3} = \min(\Delta_{5}, |f_{53}|) = \min(0,0) = 0$ **L3** = {5⁻, 0} For vertex 6 $C_{56}=3. f_{56}=0.$ $\Delta_{56} = C_{56} - f_{56} = 3 - 0 = 3$ $\Delta_{6} = \min(\Delta_{5}, \Delta_{56}) = \min(0, 3) = 0$ **L6** = {5⁺, 0} Since vertex 6 is t $\Delta_t = 0$

Now all vertices are all labeled Find the path $L6 = \{5^+, 3\} \rightarrow L5 = \{2^-, 0\} \rightarrow L2 = \{1^+, 9\} \rightarrow L1$ Thus one augmenting path is 1-2-5-6 Add $\Delta_t = 0$ to this path. (No change) ------

Remove all the labels. Start scanning


3) Scan 1. i=1
(from above)
$$\Delta_2 = \Delta_{12} = 9$$
. L2 = {1⁺, 9}
 $\Delta_4 = \Delta_{14} = 7$. L4 = {1⁺, 7}


Scan 2: (change path) Scan 4. i=4

(from above)
$$\Delta_5 = 0$$
, L5 = {4⁺, 10}

Scan 5. i=5 (from above) $\Delta_6 = 3$, L6 = {5⁺, 3}

t is reached. $\Delta_6 = \Delta_t = 3$ **L6** = {5⁺, 3} \rightarrow **L5** = {4⁺, 0} \rightarrow **L4** = {1⁺, 9} \rightarrow **L1** One augmenting path is 1-4-5-6

 $\begin{array}{c} \textbf{Remove all the labels. Start scanning} \\ \text{If we try paths} \\ 1,2,5,3,6 \\ \text{we will get} \quad \Delta_t = 0 \\ \textbf{Result: We have reached maximum flow.} \end{array}$