Bipartite Maximum Cardinality
Matching
ALGORITHM MATCHGNG [G = (S, T; E), M, n]
This algorithm determines a maximum cardinality matching M in a bipartite
graph (
by augmenting a given matching in G.
INPUT: Bipartite graph G = (S, T; E) with vertices 1, » « », n, matching M in (
(for instance, M = 0)
OUTPUT: Maximum cardinality matching M in G
1. If there is no exposed vertex in S then
OUTPUT M. Stop
[M is of maximum cardinality in G.]
Else label ali exposed vertices in S with 0.
2. For each ; in S and edge (5!, j) not in M, label j with ;', unless aiready
labeled
3. For each nonexposed] in T, label ;' with j, where ; is the other
end of the unique edge (;', j) in M.
4. Backtrack the altemating paths P ending on an exposed vertex
in T by using the labeis on the vertices.
5. If no P in Step 4 is augmenting then
OUTPUT M. Stop
[M is of maximum cardinality in G.]
Else augment M by using an augmenting path P.
K*ilym/” uu luii*la.
Go to Step 1.
End MATCH<=NG
EXAMPLE 1 Maximum cardinality matching
Is the matching My in Fi474 .&:a of maximum cardinality? If not, augment it
until maximum cardinalip
reached.
Solution. We appiy the algorithm.
1. Label 1 and 4 with 0.
2. Label 7 with 1. Label 5, 6, 8 with 3.
3. Label 2 with 6, and 3 with 7.
[Ali vertices are now labeled as shown in Fi474.:a.]
4. Py:1—~1~3— 5. [By backtracking, P" is augmenting.]
Pg:1-7—3-8. [Py, isaugmenting.}
5. Augment My by using Py, dropping (3, 7) from My and inciuding (1,7)
and (3, 5). Remove ali labeli
Go to Step 1.
Figure 474b shows the resulting matching Mg = {(1, 7), (2, 6), (3, 5)}.
1. Label 4 with 0.
2. Label 7 with 2. Label 6 and 8 with 3.
3. Label 1 with 7, and 2 with 6, and 3 with 5.
4. ps: 5—3 - 8. [Py is altemating but not augmenting.]



5. Stop. Mg is of maximum cardinality (namety, 3).



