
Ford-Fulkerson Algorithm for
Maximum Flow

1. Assign an initial flow fij (for instance, fij =0) for
 all edges

 2.Label s by Ø. Mark the other vertices "unlabeled."

3. Find a labeled vertex i that has not yet been
scanned . Scan i as follows

 For every unlabeled adjacent vertex j, (a or b or c)
a) if Cij > fij and fij ≥0
 compute Δij = Cij ─ fij and Δj where
 Δj=

1i if) ij ,imin(
1i if ij

⎩
⎨
⎧

>ΔΔ
=Δ

 Label j with a forward label (i+ , fij)
b) if Cij> |fij| and fij <0 (opposite direction)
 Δj =min (Δj , |fij|)
 Label j with a backward label (i─ , Δj)
c) if Cij= fij No operation.

If no unlabeled j exists STOP.

4) Repeat step 3 until t is reached.
 [This gives a flow augmenting path P: s —>• t]
 If it is impossible to reach t then STOP.

5). Backtrack the path P, using the labels.

6)Using P, augment the existing flow by Δt,
 Set f = f + Δt,.

7) Remove all labels from vertices 2, … , n.
 Go to Step 3.

Example: Find the maximum flow from s to t in the
following graph.

Solution 1) C12=20, C23=11, C36=13, C35=5, C14=10,
C 45=7, C52=4, C56=3,
f12=f23=f36=f35=f14=f45=f52=f56=0,

 2) vertex 1 (s) is labeled Ø, 2,3,4,5,6 are unlabeled
3) Scan 1. i=1 ,Adjacent labels 2 and 4. [j=2 and j=4]
 C12=20. f12 =0. (perform a)

 For vertex j=2
 Δ12 = C12 ─ f12 = 20 ─ 0=20

 Δ2 = Δ12 =20.
 L2 = {1+, 20}

 For vertex j=4
 C14=20. f14 =0. (perform a)

 Δ14 = C14 ─ f14 = 10 ─ 0=10
 Δ4 = Δ14 =10.
 L4 = {1+, 10}

 Scan 2. i=2 ,Adjacent labels 1, 3 and 5. [j=3 and j=5]
 (j=1 is already labelled)

For vertex j=3
 C23=11. f23 =0.

 Δ23 = C23 ─ f23 = 11 ─ 0 = 11
 Δ3 = min (Δ2 , Δ23) = min(20, 11) =11
 L3 = {2+, 11}

 For vertex j=5 , f25 <0 (perform b)
 Δ5 = min(Δ2 ─ | f25 |) = min(20,0) =0

 L5 = {2─ , 0}

 Scan 3. i=3 ,Adjacent labels 2, 5 and 6. [j=6]
 (j=2 and j=5 are already labelled)
 C36=13. f36 =0.

 Δ36 = C36 ─ f36 = 13 ─ 0 = 13
 Δ6 = min (Δ3 , Δ36) = min(11, 13) =11
 L6 = {3+, 11}

 Since vertex 6 is t

 Now all vertices are all labeled
Find the path
 L6 = {3+, 11} L3 = {2+, 11} L2 = {1+, 20} L1
Thus one augmenting path is 1-2-3-6

Add Δt =11 to this path
 f12(new) = f12(old) + Δt
 f12 = 0 + 11
 f23 =0 +11=11
 f36 =0 +11=11

Remove all the labels. Start scanning

Δt=11

2

1

3

6

4 5
7,0

20,0

10,0
3,0

13,0

11,0

5,0
s t

4,0

1) C12=20, C23=11, C36=13, C35=5, C14=10, C 45=7,
C52=4, C56=3,

f12=f23=f36=11, f35=f14=f45=f52=f56=0,

2) vertex 1 (s) is labeled Ø, 2,3,4,5,6 are unlabeled

3) Scan 1. i=1 ,Adjacent labels 2 and 4. [j=2 and j=4]
 C12=20. f12 =11. (perform a)

 For vertex j=2
 Δ12 = C12 ─ f12 = 20 ─ 11=9

 Δ2 = Δ12 =9.
 L2 = {1+, 9}

 For vertex j=4
 C14=10. f14 =0.

 Δ14 = C14 ─ f14 = 10 ─ 0=10
 Δ4 = Δ14 =10.
 L4 = {1+, 10}

 Scan 2. i=2 , Adjacent labels 1, 3 and 5. [j=3 and j=5]
 (j=1 is already labelled)

 For vertex j=3,
 C23=11. f23 =11. C23 = f23 No action.

 For vertex j=5 , f25 <0 (perform b)
 Δ5 = min(Δ2 ─ | f25 |) = min(9,0) =0

 L5 = {2─ , 0}

 Scan 3. i=3 not labeled no action.

 Scan 4. i=4 Adjacent labels 1, 5. [j=5]
 (j=1 is already labelled)
 C45=7. f45 =0.

 Δ45 = C45 ─ f45 = 7 ─ 0 = 7
 Δ5 = min (Δ4 , Δ45) = min(10, 7) =10
 L5 = {4+, 10}

 Scan 5. i=5 Adjacent labels 2,3,6,4 [j=3, j=6]
 (j=2 j=4 are already labelled)
 C56=3. f56 =0.

 Δ56 = C56 ─ f56 = 3 ─ 0 = 3
 Δ6 = min (Δ5 , Δ56) = min(10, 3) =3

 L6 = {5+, 3}

 Since vertex 6 is t Δt =3

 Now all vertices are all labeled
Find the path
 L6 = {5+, 3} L5 = {4+, 10} L4 = {1+, 20} L1
Thus one augmenting path is 1-4-5-6

Add Δt =3 to this path
 f14(new) = f14(old) + Δt
 f14 = 0 + 3
 f45 =0 +3=3
 f56 =0 +3=3

Remove all the labels. Start scanning
 2) vertex 1 (s) is labeled Ø, 2,3,4,5,6 are unlabeled

 3) Scan 1. i=1 ,Adjacent labels 2 and 4. [j=2 and j=4]
 C12=20. f12 =11. (perform a)

 For vertex j=2
 Δ12 = C12 ─ f12 = 20 ─ 11=9

 Δ2 = Δ12 =9.
 L2 = {1+, 9}

 For vertex j=4
 C14=10. f14 =3.

 Δ14 = C14 ─ f14 = 10 ─ 3=7
 Δ4 = Δ14 =7.
 L4 = {1+, 7}

 Scan 2. i=2 , Adjacent labels 1, 3 and 5. [j=3 and j=5]
 (j=1 is already labelled)

 For vertex j=3,
 C23=11. f23 =11. C23 = f23 No action.

 For vertex j=5 , f25 <0 (perform b)
 Δ5 = min(Δ2 ─ | f25 |) = min(9,0) =0

 L5 = {2─ , 0}

 Scan 3. i=3 not labeled no action.

 Scan 4. i=4 Adjacent labels 1, 5. [j=5]
 (j=1 is already labelled)
 C45=7. f45 =0.

 Δ45 = C45 ─ f45 = 7 ─ 0 = 7

2

1

3

6

4 5
7,3

20,11

10,3
3,3

13,11

11,11

5,0
s t

4,0

2

1

3

6

4 5
7,0

20,11

10,0
3,0

13,11

11,11

5,0
s t

4,0

 Δ5 = min (Δ4 , Δ45) = min(10, 7) =10
 L5 = {4+, 10}

 Scan 5. i=5 Adjacent labels 2,3,6,4 [j=3, j=6]
 (j=2 j=4 are already labelled)
 C56=3. f56 =0.

 Δ56 = C56 ─ f56 = 3 ─ 0 = 3
 Δ6 = min (Δ5 , Δ56) = min(10, 3) =3

 L6 = {5+, 3}

Solution 1) C12=20, C23=11, C36=13, C35=5,

C14=10, C

 Scan 4. i=4 ,Adjacent labels 1, 5 and 6. [j=6]
 (j=2 and j=5 are already scanned)
 C36=13. f36 =0.

 Δ36 = C36 ─ f36 = 13 ─ 0 = 13
 Δ6 = min (Δ3 , Δ36) = min(11, 13) =11
 L6 = {3+, 11}

 Since L6 is t
For vertex j=5 , f25 <0 (perform b)
 Δ5 = min(Δ2 ─ | f25 |) = min(20,0) =0

 L5 = {2─ , 0}

 Δ4 = Δ14 =10.
 L4 = {1+, 10}

vv
 Scan 2 and 4.

 Second Number: given flow (fi,j)
 S: source t: target
Path: sequence of edges in a diagraph

Flow augmenting path: Paths from S to t.
 Examples: Path 1=(1-2-3-6) Path 2=(1-4-5-
6)
 Path 3=(1-4-5-3-6)

Forward edge:If the direction of path is the same as
the direction of edge it is called forward edge.

Backward edge:If the direction of path is the
opposite of the direction of edge it is called forward
edge.
Path 1: 1-2, 2-3, 3-6 all forward edges

Path 3: 1-4, 4-5, 3-6 forward edges 5,3 backward
edge

Cij=the capacity of edge from i to j
fij=The value of current flow from i to j.
∆ij=possible additional flow from edge i to j.
∆ij = Cij- fij
 ∆12 =20-5=15, ∆23 =11-8=3, ∆34 =13-6=7,
 ∆14 =10-4=6, ∆45 =7-4=3, ∆56=3-3=0,

∆35=5-2 =3.
Maximum Flow: Maximum possible flow from s to t
 Kirchof’s rule: Incoming flow=Outgoing flow
Example: for vertex 2, 5,3 incoming flow.
 8:outgoing flow.. 5+3=8

 Possible additional flow in path 1
We can increase maximum flow by 3 because the
edge 2,3 allows only 3.

 No additional flow is possible in path 2, because
∆56=0, additional flow is possible in path 3.

Ford-Fulkerson Algorithm for Maximum Flow

ALGORفTHM FORD-FULKERSON
[G = (V, E), vertices l (= s), • • • , n (= t),
edges (;', j), Cy]

This algorithm computes the maximum flow in a network
G with source s, sink (, aý

capacities Cy > O of the edges (;', j).
INPUT: n, s = l, t = n, edges (;', j) of G,
Cy
OUTPUT:
Maximum flow
f in G
1. Assign an initial flow f y (for
instance, f y = O for ali edges), compute
f.
2. Label s by 0. Mark the other vertices
"unlabeled."

J. l'lllU a laü^l^U v^/ha/a. t tilUL lýuo llüt J^l
Uüülý a^^mý^u. 0^0.11

For every unlabeled adjacent vertex j,
if Cy > f\p compute

Δt =11
2

1

3

6

4 5
7,6

20,8

10,4
3,3

13,11

11,11

5,0
s t

4,3

A
if
(•
=
l

'
ü

Ay = Cy - fy and A,
im
in
(A
,,
A
y)
if
;•
> l

and label7 with a "fonvard
label" (i"1', A,); or if f^ > O,
compute
A, == min(A,, f,,)
and label j
by a
"backward
label" (;~,
Aj).
If no such j
exists then
OUTPUT f.
Stop
[^"
;5

r/îe
ma
xim
um
flo
w.}
Els
e

con
tin
ue
(th
at
is,
go
to
Ste
p

4).
4. Repeat Step 3 until t is reached.

[This gives a flow
augmenting path P: s

—>• t.}
If it is impossible to

reach t then OUTPUT
f. Stop

[f
is

the
ma
xim
um
flo
w.}
Els
e

con
tin
ue
(th
at
is,
go
to
Ste
p

5).
5. Backtrack the path P, using the
labels.
6. Using P, augment the existing flow
by a(. Set f = f + a(.
7. Remove ali labels from
vertices 2, • • • , n. Go to Step 3.
End FORD-FULKERSON

A Network is a diagraph in which each edge has
assigned to it a capacity (maximum flow)

Graphs and Combinatorial Optimization
21.7 Ford-Fulkerson

Algorithm
for Maximum Flow

2

1

3

6

4 5
7,4

20,5

10,4
3,3

13,6

11,8

5,2
s t

4,3

Flow augmenting paths, as discussed in the
last section, are used as the basic tool ini
Ford-Fulkerson algorithm in Table 21.8 in
which a given flow (for instance, zero flofl
ali edges) is increased until it is maximum.
The algorithm accomplishes the increase
a stepwise construction of flow augmenting
paths, one at a time, until no further sý
paths can be constructed, which happens
precisely when the flow is maximum.
Table 21.8

Ford-Fulkerson Algorithm for Maximum Flow
ALGORفTHM FORD-FULKERSON
[G = (V, E), vertices l (= s), • • • , n (= t), edges (;', j), Cy]
This algorithm computes the maximum flow in a network

G with source s, sink (, aý
capacities Cy > O of the edges (;', j).
INPUT: n, s = l, t = n, edges (;', j) of G, Cy
OUTPUT: Maximum flow f in G
1. Assign an initial flow f y (for instance, f y = O for ali
edges), compute f.
2. Label s by 0. Mark the other vertices "unlabeled."
J. l'lllU a laü^l^U v^/ha/a. t tilUL lýuo llüt J^l Uüülý

a^^mý^u. 0^0.11
For every unlabeled adjacent vertex j, if Cy > f\p
compute
A if (• = l
'ü
Ay = Cy - fy and A,
imin (A,, Ay) if ;• > l
and label7 with a "fonvard label" (i"1', A,); or if f^ > O,
compute
A, == min(A,, f,,)
and label j by a "backward label" (;~, Aj).
If no such j exists then OUTPUT f. Stop
[^" ;5 r/îe maximum flow.}
Else continue (that is, go to Step 4).
4. Repeat Step 3 until t is reached.
[This gives a flow augmenting path P: s —>• t.}
If it is impossible to reach t then OUTPUT f. Stop
[f is the maximum flow.}
Else continue (that is, go to Step 5).
5. Backtrack the path P, using the labels.
6. Using P, augment the existing flow by a(. Set f = f +
a(.
7. Remove ali labels from vertices 2, • • • , n. Go to Step
3.
End FORD-FULKERSON

Graphs and Combinatorial Optimization
Chap.

Table21.9

