
Ford-Fulkerson Algorithm for 
Maximum Flow 

   
1. Assign an initial flow fij  (for instance, fij =0) for    
      all edges  

   
  2.Label s by Ø.   Mark the other vertices "unlabeled." 

 
3. Find a labeled vertex  i   that has not yet been 
scanned . Scan i  as follows  
    
 For every unlabeled adjacent vertex j, (a or b or c) 
a) if Cij > fij  and   fij ≥0 
          compute     Δij = Cij ─ fij    and    Δj  where   
          Δj=      
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>ΔΔ
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           Label  j  with a forward label  (i+ , fij) 
b) if  Cij> |fij|  and   fij <0    (opposite direction) 
        Δj =min (Δj , |fij|) 
        Label  j  with a backward label  (i─ , Δj) 
c) if  Cij= fij   No operation.  
 
If  no  unlabeled  j exists STOP. 
 
4) Repeat step 3 until  t is reached.  
 [This gives a flow augmenting path P: s —>• t] 
  If it is impossible to reach t then STOP. 
 
5). Backtrack the path P, using the labels. 
 
6)Using P, augment the existing flow by  Δt, 
      Set f = f + Δt,. 
 
7) Remove all labels from vertices 2, … , n.  
     Go to Step 3. 
 
Example: Find the maximum flow from s to t in the 
following graph.  

 
Solution  1) C12=20,  C23=11, C36=13,  C35=5, C14=10, 
C 45=7,   C52=4, C56=3,     
f12=f23=f36=f35=f14=f45=f52=f56=0,     

 
 2)  vertex 1 (s) is labeled Ø,   2,3,4,5,6 are unlabeled 
3)  Scan 1.  i=1  ,Adjacent labels 2 and 4. [ j=2 and j=4]  
         C12=20.  f12 =0. (perform a)  

   For vertex j=2 
       Δ12 = C12 ─ f12 = 20 ─ 0=20   

           Δ2 = Δ12 =20. 
           L2 = {1+, 20} 

   For vertex j=4 
        C14=20.  f14 =0. (perform a)  

       Δ14 = C14 ─ f14 = 10 ─ 0=10   
           Δ4 = Δ14 =10. 
           L4 = {1+, 10}  
 
  Scan 2.  i=2  ,Adjacent labels 1,  3 and 5. [ j=3 and j=5]  
                           (j=1  is already  labelled) 

For vertex j=3       
           C23=11.  f23 =0.  

        Δ23 = C23 ─ f23 = 11 ─ 0 = 11   
           Δ3 = min (Δ2 , Δ23) = min(20, 11) =11 
           L3 = {2+, 11} 

   For vertex j=5 , f25 <0      (perform b) 
       Δ5 = min( Δ2 ─ | f25 | ) = min(20,0) =0   

             L5 = {2─ , 0}  
 
  Scan 3.  i=3  ,Adjacent labels 2,  5 and 6. [ j=6 ]  
                    (j=2 and j=5  are  already  labelled) 
         C36=13.  f36 =0.  

       Δ36 = C36 ─ f36 = 13 ─ 0 = 13   
           Δ6 = min (Δ3 , Δ36) = min(11, 13) =11 
           L6 = {3+, 11} 

  Since vertex 6    is t    
 

          ----------------------------------  
  Now  all vertices are all labeled       
Find the path  
      L6 = {3+, 11}  L3 = {2+, 11}    L2 = {1+, 20}   L1   
Thus  one augmenting  path is 1-2-3-6  

Add  Δt =11 to this path 
  f12(new) = f12(old)  + Δt   
  f12 = 0  + 11  
  f23 =0 +11=11 
  f36 =0 +11=11 
 
 

Remove all the labels. Start scanning   
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1) C12=20,  C23=11, C36=13,  C35=5, C14=10, C 45=7,   
C52=4, C56=3,     

f12=f23=f36=11,  f35=f14=f45=f52=f56=0, 
 
2)  vertex 1 (s) is labeled Ø,   2,3,4,5,6 are unlabeled 
 
3)  Scan 1.  i=1  ,Adjacent labels 2 and 4. [ j=2 and j=4]  
         C12=20.  f12 =11. (perform a)  

   For vertex j=2 
       Δ12 = C12 ─ f12 = 20 ─ 11=9   

           Δ2 = Δ12 =9. 
           L2 = {1+, 9} 

   For vertex j=4 
        C14=10.  f14 =0.   

       Δ14 = C14 ─ f14 = 10 ─ 0=10   
           Δ4 = Δ14 =10. 
           L4 = {1+, 10}  
 
  Scan 2.  i=2  , Adjacent labels 1,  3 and 5. [ j=3 and j=5]  
                           (j=1  is already  labelled) 

  For vertex j=3,    
        C23=11.  f23 =11.       C23 = f23   No action.    

  For vertex j=5 , f25 <0      (perform b) 
       Δ5 = min( Δ2 ─ | f25 | ) = min(9,0) =0   

             L5 = {2─ , 0}  
 
  Scan 3.       i=3  not labeled  no action.   
 
  Scan 4.  i=4    Adjacent labels 1,  5. [ j=5]  
                           (j=1  is already  labelled) 
          C45=7.  f45 =0.  

       Δ45 = C45 ─ f45 = 7 ─ 0 = 7   
           Δ5 = min (Δ4 , Δ45) = min(10, 7) =10 
           L5 = {4+, 10} 
 
  Scan 5.  i=5    Adjacent labels 2,3,6,4 [ j=3,  j=6]  
                           (j=2  j=4  are  already  labelled) 
          C56=3.  f56 =0.  

       Δ56 = C56 ─ f56 = 3 ─ 0 = 3   
           Δ6 = min (Δ5 , Δ56) = min(10, 3) =3 

           L6 = {5+, 3}   
 

  Since vertex 6    is  t    Δt =3         
          ----------------------------------  
  Now  all vertices are all labeled       
Find the path  
      L6 = {5+, 3}  L5 = {4+, 10}    L4 = {1+, 20}   L1   
Thus  one augmenting  path is 1-4-5-6  

Add  Δt =3  to this path 
  f14(new) = f14(old)  + Δt   
  f14 = 0  + 3  
  f45 =0 +3=3 
  f56 =0 +3=3  

 
 

Remove all the labels. Start scanning   
  2)  vertex 1 (s) is labeled Ø,   2,3,4,5,6 are unlabeled 
 
  3)  Scan 1.  i=1  ,Adjacent labels 2 and 4. [ j=2 and j=4]  
         C12=20.  f12 =11. (perform a)  

   For vertex j=2 
       Δ12 = C12 ─ f12 = 20 ─ 11=9   

           Δ2 = Δ12 =9. 
           L2 = {1+, 9} 

   For vertex j=4 
        C14=10.  f14 =3.   

       Δ14 = C14 ─ f14 = 10 ─ 3=7   
           Δ4 = Δ14 =7. 
           L4 = {1+, 7}  
 
  Scan 2.  i=2  , Adjacent labels 1,  3 and 5. [ j=3 and j=5]  
                           (j=1  is already  labelled) 

  For vertex j=3,    
         C23=11.  f23 =11.       C23 = f23   No action.    

  For vertex j=5 , f25 <0      (perform b) 
       Δ5 = min( Δ2 ─ | f25 | ) = min(9,0) =0   

             L5 = {2─ , 0}  
 
  Scan 3.       i=3  not labeled  no action.   

 
  Scan 4.  i=4    Adjacent labels 1,  5. [ j=5]  
                           (j=1  is already  labelled) 
          C45=7.  f45 =0.  

       Δ45 = C45 ─ f45 = 7 ─ 0 = 7   
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           Δ5 = min (Δ4 , Δ45) = min(10, 7) =10 
           L5 = {4+, 10} 
 
  Scan 5.  i=5    Adjacent labels 2,3,6,4 [ j=3,  j=6]  
                           (j=2  j=4  are  already  labelled) 
          C56=3.  f56 =0.  

       Δ56 = C56 ─ f56 = 3 ─ 0 = 3   
           Δ6 = min (Δ5 , Δ56) = min(10, 3) =3 

           L6 = {5+, 3}   
 
 
Solution  1) C12=20,  C23=11, C36=13,  C35=5, 

C14=10, C 
 
 
 

  Scan 4.  i=4  ,Adjacent labels 1,  5 and 6. [ j=6 ]  
                    (j=2 and j=5  are  already scanned) 
         C36=13.  f36 =0.  

       Δ36 = C36 ─ f36 = 13 ─ 0 = 13   
           Δ6 = min (Δ3 , Δ36) = min(11, 13) =11 
           L6 = {3+, 11}  

  Since L6     is  t 
For vertex j=5 , f25 <0      (perform b) 
       Δ5 = min( Δ2 ─ | f25 | ) = min(20,0) =0   

             L5 = {2─ , 0}  
 
         Δ4 = Δ14 =10. 
           L4 = {1+, 10}  
 
 
 
vv 
       Scan 2 and  4. 
 
  Second Number: given flow   (fi,j) 
   S: source         t: target 
Path: sequence  of edges in a diagraph 
 
Flow augmenting path: Paths from S to t.  
   Examples: Path 1=(1-2-3-6)     Path 2=(1-4-5-
6) 
             Path 3=(1-4-5-3-6) 
 
Forward edge:If the direction  of path is the same as 
the direction of edge it is called forward edge.  
 
Backward edge:If the direction  of path is the 
opposite of  the direction of edge it is called forward 
edge.  
Path 1: 1-2,  2-3, 3-6  all forward edges 

Path 3: 1-4, 4-5, 3-6 forward edges  5,3 backward 
edge 
 
Cij=the capacity of edge from i to j  
fij=The value of current flow from i to j. 
∆ij=possible additional flow  from edge i to j.  
∆ij = Cij- fij 
  ∆12 =20-5=15,         ∆23 =11-8=3,        ∆34 =13-6=7, 
  ∆14 =10-4=6,         ∆45 =7-4=3,        ∆56=3-3=0,          

∆35=5-2 =3.  
Maximum Flow: Maximum possible flow from s to t 
 Kirchof’s rule:  Incoming flow=Outgoing flow 
Example: for vertex  2,  5,3 incoming flow.   
   8:outgoing flow..       5+3=8 
 
  Possible additional flow in path 1 
We can increase  maximum flow by 3 because the 
edge   2,3  allows only 3.  
 
 No  additional flow is possible in path 2, because  
∆56=0,  additional flow is possible in path 3.  
  

 
 
 
Ford-Fulkerson Algorithm for Maximum Flow 

ALGORفTHM FORD-FULKERSON 
[G = (V, E), vertices l (= s), • • • , n (= t), 
edges (;', j), Cy] 

This algorithm computes the maximum flow in a network 
G with source s, sink (, aý 

capacities Cy > O of the edges (;', j). 
INPUT: n, s = l, t = n, edges (;', j) of G, 
Cy 
OUTPUT: 
Maximum flow 
f in G 
1. Assign an initial flow f y (for 
instance, f y = O for ali edges), compute 
f. 
2. Label s by 0. Mark the other vertices 
"unlabeled." 

J. l'lllU a laü^l^U v^/ha/a. t tilUL lýuo llüt J^l 
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For every unlabeled adjacent vertex j, 
if Cy > f\p compute 

Δt =11 
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4. Repeat Step 3 until t is reached. 

[This gives a flow 
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5). 
5. Backtrack the path P, using the 
labels. 
6. Using P, augment the existing flow 
by a(. Set f = f + a(. 
7. Remove ali labels from 
vertices 2, • • • , n. Go to Step 3. 
End FORD-FULKERSON 

 
A Network is a diagraph in which  each edge has 
assigned to it a capacity (maximum flow) 
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Flow augmenting paths, as discussed in the 
last section, are used as the basic tool ini 
Ford-Fulkerson algorithm in Table 21.8 in 
which a given flow (for instance, zero flofl 
ali edges) is increased until it is maximum. 
The algorithm accomplishes the increase 
a stepwise construction of flow augmenting 
paths, one at a time, until no further sý 
paths can be constructed, which happens 
precisely when the flow is maximum. 
Table 21.8 

Ford-Fulkerson Algorithm for Maximum Flow 
ALGORفTHM FORD-FULKERSON 
[G = (V, E), vertices l (= s), • • • , n (= t), edges (;', j), Cy] 
This algorithm computes the maximum flow in a network 

G with source s, sink (, aý 
capacities Cy > O of the edges (;', j). 
INPUT: n, s = l, t = n, edges (;', j) of G, Cy 
OUTPUT: Maximum flow f in G 
1. Assign an initial flow f y (for instance, f y = O for ali 
edges), compute f. 
2. Label s by 0. Mark the other vertices "unlabeled." 
J. l'lllU a laü^l^U v^/ha/a. t tilUL lýuo llüt J^l Uüülý 

a^^mý^u. 0^0.11 
For every unlabeled adjacent vertex j, if Cy > f\p 
compute 
A                 if (• = l 
'ü    
Ay = Cy - fy and A, 
imin (A,, Ay) if ;• > l 
and label7 with a "fonvard label" (i"1', A,); or if f^ > O, 
compute 
A, == min(A,, f,,) 
and label j by a "backward label" (;~, Aj). 
If no such j exists then OUTPUT f. Stop 
[^" ;5 r/îe maximum flow.} 
Else continue (that is, go to Step 4). 
4. Repeat Step 3 until t is reached. 
[This gives a flow augmenting path P: s —>• t.} 
If it is impossible to reach t then OUTPUT f. Stop 
[f is the maximum flow.} 
Else continue (that is, go to Step 5). 
5. Backtrack the path P, using the labels. 
6. Using P, augment the existing flow by a(. Set f = f + 
a(. 
7. Remove ali labels from vertices 2, • • • , n. Go to Step 
3. 
End FORD-FULKERSON 
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