“'The Stabzluy 0[ Linear F eedback Systems

. A stable system is defined as a system with a bounded (limited) system response. That

1s, if the system is subjected to a bounded i input or disturbance and the response is bounded
in magnitude, the system is said to be stable.

A stable system is a dynamic system with a bounded response
. toa bounded input.
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. Thus a necessary and sufficient condition for a feedback system to be stable is
that all the poles of the system transfer function have negative real parts. A system is
stable if all the poles of the transfer function are in the left-hand s-plane. We will calla .

—_System not stable if not all the roots are in the left-hand plang,xW'
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62 THE ROUTH-HURWITZ STA
_ BILITY CRITERION .
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Further rows of the schedule are then completed as follows:
5" a, a,-., a, 4
Sn_l an—l an—-3 an—S
Sn-—Z bn—l bn-3 bn—S
Sn-—-J cn—l cn—3 cn—S
- ™
So hn—l
where
by, = @a=)0=d) = ay@,y) _ ~1la, a,,|
| an—-l an—l an-l an—-3
bn-—i’- = ——I- a, an—«l .
an—l an—-l an—S
and
1’ cn_l = —1 aﬂ—l an-—S :
bn—l bn-l bn—3

i and so on. The algorithm for calculating the entries in the array can be followed on a
determinant basis or by using the form of the equation for b, _ -

The Routh-Hurwitz criterion states that the number of roots of q(s) with posi-
tive real parts is equal to the number of changes in sign of the first column of the
: . Routh array. This criterion requires that there be no changes in sign in the first column for
a stable system. This requirement is both necessary and sufficient.
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The Routh array is written as
§2 a, a,
S a 0
50 by 0
where
b, = 4129~ (0)a, - 1 Iaz Qo | _ a,.
G a la;, 0O

Third-order system
The characteristic polynomial of a third-order system is

9() = a35% + a,52 + as + a,.

The Routh array is
3
s a; a,
2
s a, a,
5! b, 0
59 ¢ 0,
where
a,a, — aga, b,a,
b, = . and € = —— = q,.
a, b,

For the third-order System to be stable, it js necessary and sufficient that the coefficients be
positive and a,a, > dya;. The condition when @24, = aqay results in a marginal stability
case, and one pair of roots lies on the Imaginary axis in the s-plane. This marginal case is

will be discussed under Case 3,

As a final example of characteristic equations that result in no zero elements in the first
row, let us consider a polynomial _.

9=~ 1+ Vs - 1 - jv/iys + N =s+52425+ 2 (69

The polynomial satisfies al the necessary conditions because all the coefficients exist and
are positive, Therefore utilizing the Routh array, we have

s | 1 2

52 1 24

sl ~22 0

50 24 0
Because two changes in sign appear in the first column, we find that two roots of ¢(s) lie in
the right-hand ple--  + ... nrinr knowlade~t oo .. .




¢t - - | g(s) = s5 + 254 + 253 + 452 + 11s + 10, (6.10) - >

The Routh array is then
§3 1 2 11
s4 2 4 10
53 e 6 0
52 c, 10 O
s d 0 0
s0 10 0 O

where

de — 12 -1 6c, — 10
6 = —————=r—, and dI=M'—)6
€ € Cy

There are two sign changes due to the large negative number in the first column, ¢, =
— 12/e. Therefore the system is unstable, and two roots lie in the right half of the plane.

Unstable system
As a final example of the type of Case 2, consider the characteristic polynomial
g(s) = s + 3 + 52+ 5+ K 6.11)
where it is desired to determine the gain K that results in marginal stability. The Routh
array is then
54 1 1 K '
s3 1 10
52 e K O
s ¢, 0 0
s 1 K 0 0 i
where
; e—-K -K
! CI — — —
€ €

Therefore for any value of K greater than zero, the system is unstable. Also, because the
last term in the first column is equal to K, a negative value of K will result in an unstable
system. Therefore the system is unstable for all values of gain X. m | _ —

-
TR

I?(S) = 53 + 252 + 45 + K (6 12)

52 2 K
8 - K
ol
5 0
' |
50 K 0 |

' l For a stable system, we require that
11 o 0<K<S8.
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