Solution of Linear Equations by Gaus Elimination

~ ~ -				1					
[2	6	8	$\left \left\lceil x \right\rceil \right $	4	Augmented Matrix	[2	6	8	4]
4	17	14	y	$= \begin{bmatrix} 4 \\ 15 \\ 30 \end{bmatrix}$		4	17	14	15
1	13	14	[<i>z</i> .]	30	\Rightarrow	1	13	14	30
Mu	ltiply	the	first	row ł	v - 2 and add the result to the	seco	nd r	οw.	

Multiply the first row by -2 and add the result $\begin{bmatrix} 2 & 6 & 8 & 4 \\ 4 & 17 & 14 & 15 \\ 1 & 13 & 14 & 30 \end{bmatrix} \qquad R_2 - 2R_1 \rightarrow R_2$

2	6	8	4]
4-2*2	17-2*6	14 - 2 * 8	15-2*4	=	0	5	-2	7	
1	13	14	30		1	13	14	3	0

Multiply the first row by -0.5 and add the result to the third row.

2 6 8	4	
0 5 -2	7	$R_3 - 0.5R_1 \rightarrow R_3$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	

2	6	8	4 2	6	8	4
0	5	-2	$\begin{bmatrix} 4\\7\\3-0.5*4 \end{bmatrix} = \begin{bmatrix} 2\\0\\0 \end{bmatrix}$	5	-2	7
1-0.5*2	13-0.5*6	14-0.5*8	3-0.5*4 [0	10	10	30

Multiply the second row by -2 and add the result to the third row.

$$\begin{vmatrix} 2 & 6 & 8 & 4 \\ 0 & 5 & -2 & 7 \\ 0 & 10 & 10 & 28 \end{vmatrix} R_3 - 2R_2 \to R_3$$

2	6	8	4	2	6	8	4]
0	5	-2	7 =	0	5	-2	7
0	10 - 2 * 5	10-2*(-2)	$\begin{bmatrix} 4 \\ 7 \\ 28 - 2 * 7 \end{bmatrix} =$	0	0	14	14

Write the resulting equations in separate form.

$$2x + 6y + 8z = 4$$
$$5y - 2z = 17$$
$$14z = 14$$

Now solve the equtions starting from the bottom.

 $14z = 14 \implies z = \frac{14}{14} = 1$ $5y - 2z = 7 \implies 5y - 2*1 = 7 \implies 5y = 9 \implies y = \frac{9}{5} = 1.8$ $2x + 6y + 8z = 4 \implies 2x + 6*1.8 + 8*1 = 4 \implies 2x + 10.8 + 8 = 4 \implies x = -7.4$ During the process we converted the coefficient matrix into upper triangular Form $\begin{bmatrix} 2 & 6 & 8 & 4 \\ 4 & 17 & 14 & 15 \\ 1 & 13 & 14 & 30 \end{bmatrix} \implies \begin{bmatrix} 2 & 6 & 6 & 4 \\ 0 & 5 & -7 & 1 \\ 0 & 0 & 14 & 14 \end{bmatrix}$ 2 6 8

Explanation

2x + 6y + 8z = 4	(<i>E</i> 1)
4x + 17y + 14z = 15	(<i>E</i> 2)
x + 13y + 14z = 30	(<i>E</i> 3)

Multiply both side of equation (E1) by -2. $2x + 6y + 8z = 4 \implies -4x - 12y - 16z = -8$ Add this modified equation (E1) to equation (E2). -4x - 12y - 16z = -8 + 4x + 17y + 14z = 155y - 2z = 7 (E4)

Multiply both side of equation (E1) by -0.5. $2x + 6y + 8z = 4 \implies -x - 3y - 4z = -2$ Add this modified equation (E1) to equation (E3). -x - 3y - 4z = -2 + x + 13y + 14z = 3010y + 10z = 28 (E5)

Now Solve (E4) and (E5) 5y - 2z = 7 (E4) 10y + 10z = 28 (E5)

Multiply equation (E4) by -2 and add to equation (E5) $5y-2z=7 \implies -10y+4z=-14$

$$-10y + 4z = -14$$

+ 10y + 10z = 28
14z = 14

Thus z=1. Substitute z=1 into equation (E4) and obtain y. $5y-2z=7 \implies 5y-2*1=7$ $5y=9 \implies y=\frac{9}{5}=1.8$

Substitute z=1 and y=1.8 into the first equation of (E1) and solve for x. $2x + 6y + 8z = 4 \implies 2x + 6*1.8 + 8*1 = 4$ $\implies 2x + 10.8 + 8 = 4 \implies x = -7.4$ Result x=-7.4 y=1.8 z=1