An easy procedure to determine linear independence of vectors

1)Put the vectors into rows of a matix

2)Reduce the matrix into echolen form by row operations3)If there is a zero row then the vectors are linearly dependent. If there is no zero row then the vectors are linearly independent.

Example L1

$$X = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}, Y = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix}, Z = \begin{bmatrix} 3 \\ -1 \\ 8 \end{bmatrix}$$
$$A = \begin{bmatrix} X^{T} \\ Y^{T} \\ Z^{T} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 5 \\ 2 & -3 & 3 \\ 3 & -1 & 8 \end{bmatrix}, \begin{array}{c} R_{2} - 2R_{1} \rightarrow R_{2} \\ R_{3} - 2R_{1} \rightarrow R_{3} \\ R_{3} - 3R_{1} \rightarrow R_{4} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 5 \\ 0 & -7 & -7 \\ 0 & -7 & -7 \end{bmatrix} R_{3} - R_{2} \rightarrow R_{3} \begin{bmatrix} 1 & 2 & 5 \\ 0 & -7 & -7 \\ 0 & 0 & 0 \end{bmatrix}$$

The vectors X,Y,Z are linearly dependent The vectors X,Y,Z have two independent vectors, (because echolen form matrix has two nonzero rows. The matrix A has rank 2.

Example L2

$$X = \begin{bmatrix} 1\\2\\5\\6\\2 \end{bmatrix}, Y = \begin{bmatrix} 2\\-3\\3\\0\\6 \end{bmatrix}, Z = \begin{bmatrix} 1\\-5\\-2\\-6\\4 \end{bmatrix}, W = \begin{bmatrix} 0\\7\\7\\12\\-2 \end{bmatrix},$$
$$B = \begin{bmatrix} 1&2&5&6&2\\2&-3&3&0&6\\1&-5&-2&-6&4\\0&7&7&12&-2 \end{bmatrix} \qquad \begin{bmatrix} 1&2&5&6&2\\R_2-2R_1 \rightarrow R_2 & 0&-7&-7&-12&2\\R_3-R_1 \rightarrow R_3 & 0&-7&-7&-12&2\\0&7&7&12&-2 \end{bmatrix} \qquad \begin{bmatrix} 1&2&5&6&2\\0&-7&-7&-12&2\\0&7&7&12&-2 \end{bmatrix}$$
$$\begin{bmatrix} 1&2&5&6&2\\0&-7&-7&-12&2\\0&0&0&0&0\\0&0&0&0&0 \end{bmatrix}$$
The vectors X,Y,Z,W are linearly dependent

The vectors X,Y,Z,W have two independent vectors. (The echolen form has two nonzero rows)

The matrix B has rank 2

Example L3											
[1	1	2	3	1	Row	[1	1	2	3	1	
C=1	1	3	5	4	\rightarrow	0	0	-1	-1	2	
2	5	8	11 4	6	operation	0	0	0	-1	13	
1	2	4	4	4	- F	0	0	0	0	17	
The matrix C has 1 independent rows											

The matrix C has 4 independent rows. The matrix C has rank 4. Example L4

	[1	2	2	3	1			[1	1	2	3	1	
D=	2	4	3	5	1			0	0	-1	-1	1 2 -13 0	
	1	2	6	7	-7 12			0	0	0	-1	-13	
	3	6	8	10	12			0	0	0	0	0	
The	The matrix D has 3 independent rows												

The matrix D has 3 independent rows The matrix D has rank 3

Example L5

							_				_
ſ	1	1	2	3	1	Row	1	1	2	3	1
	1	1	3	5	4	\rightarrow	0	3	4	5	4
	2	5	8	11	6	operation	0	0	1	2	3
	-1	2	4	4	4		0	0	0	-2	-5

The matrix has 4 independent rows The matrix has rank 4.

Example L5

[1	2	2	3	1		[1	1	2	3	1]
2	4	3	5	4	Row	0	0	-1	-1	2
1	2	6	7	10	operation	0	0	0	0	17
3	6	8	10	12	operation	0	0	0	-1	13

The matrix has 4 independent rows The matrix has rank 4.