M1-If you multiply a matrix by a vector from the right, it is equivalent to multiplying each column by the each element of the vector and adding all the results.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix} = 10 \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} + 20 \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} + 30 \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix}$$
$$= \begin{bmatrix} 10a_{11} + 20a_{12} + 30a_{13} \\ 10a_{21} + 20a_{22} + 30a_{23} \\ 10a_{31} + 20a_{32} + 30a_{33} \end{bmatrix}$$

M2-Multiplying by a diagonal matrix from the right. $\begin{bmatrix} a & a \\ a \end{bmatrix} \begin{bmatrix} 10 & 0 \\ a \end{bmatrix} \begin{bmatrix} 10a \\ 20a \end{bmatrix} \begin{bmatrix} 20a \\ 30a \end{bmatrix}$

	a_{31}	<i>a</i> ₃₂	<i>a</i> ₃₃ _	0	0	30		$10a_{31}$	20 <i>a</i> ₃₂	30 <i>a</i> ₃₃	
	<i>a</i> ₂₁	<i>a</i> ₂₂	<i>a</i> ₂₃	0	20	0	=	$10a_{21}$	$20a_{22}$	$ \begin{array}{c} 30a_{13} \\ 30a_{23} \\ 30a_{33} \end{array} $	
	a_{11}	a_{12}	a_{13}	10	0	0		$10a_{11}$	$20a_{12}$	$30a_{13}$	

								trom th	
[10	0	0	a_{11}	a_{12}	a_{13}^{-}		$10a_{11}$	10 <i>a</i> ₁₂	$10a_{13}$
0	20	0	<i>a</i> ₂₁	<i>a</i> ₂₂	<i>a</i> ₂₃	=	20 <i>a</i> ₂₁	$20a_{22}$	20 <i>a</i> ₂₃
0	0	30_	a_{31}	<i>a</i> ₃₂	<i>a</i> ₃₃ _		$30a_{31}$	30 <i>a</i> ₃₂	$ \begin{bmatrix} 10a_{13} \\ 20a_{23} \\ 30a_{33} \end{bmatrix} $

M4-Inverse of a diagonal matrix is a diagonal matrix whose values are the inverse of each element

	$\left \frac{1}{a_{11}} 0 \dots 0 \right $	
$\begin{bmatrix} a_{11} & 0 \dots & 0 \\ 0 & a_{22} \dots & 0 \end{bmatrix}^{-1} =$	$\begin{bmatrix} a_{11} \\ 0 \\ \frac{1}{a_{22}} \dots \\ 0 \end{bmatrix}$	
$\begin{bmatrix} \dots & \dots & \dots \\ 0 & 0 \dots & a_{nn} \end{bmatrix}$		
	$\begin{bmatrix} 0 & 0 \dots & \frac{1}{a_{nn}} \end{bmatrix}$	

Proof: Multiply two matrices, you will get unit matrix. **M5-**Inverse of two matrix product $[AC]^{-1} = C^{-1}A^{-1}$ **Proof:** Replace $C^{-1}A^{-1}$ for $[AC]^{-1}$ in the inversion

formula.

 $\begin{bmatrix} AC \end{bmatrix} \begin{bmatrix} AC \end{bmatrix}^{-1} = I \\ \begin{bmatrix} AC \end{bmatrix} \begin{bmatrix} C^{-1}A^{-1} \end{bmatrix}^{-1} I \\ AC \end{bmatrix} \begin{bmatrix} C^{-1}A^{-1} = I \end{bmatrix} \\ A \downarrow A^{-1} = I \\ A \downarrow A^{-1} = I \\ I \end{bmatrix}$

M6 -Problem: Calculate the inverse of T=[ABC] M7-Theorem: if A^{-1} exists and $AB=AC \implies B=C$ Proof: Multiply both sides by A^{-1} $A^{-1} [AB] = A^{-1} [AC]$ $A^{-1} AB = A^{-1} AC$ I B = I C B=CM8-Comment: if A^{-1} does not exist and AB=AC in

M8-Comment: if A^{-1} does not exist and AB=AC in general $B\neq C$

M9-Theorem: if AB=0and A^{-1} exists \Longrightarrow B=0 Proof: Multiply both sides by A^{-1} A^{-1} [AB]= $A^{-1} 0$ $A^{-1} AB= 0$ I B =0 B=0

M10-Theorem: if AB=0 and $A\neq 0$, $B\neq 0$ then A should be singular and B should be singular **Proof:** Assume A is multiplied by a vector

This means columns of A are linearly dependent.

M11-Theorem: if A singular then AB is singular and BA is singular

Proof:

M12-Theorem: $(A^{-1})^{T} = (A^{T})^{-1}$

Proof:

MATRIX EQUATIONS

M13-Problem if AX=B Calculate X. **Solution:** multiply both sides by A^{-1}

AX=B $A^{-1} AX=A^{-1} B$

 $X == A^{-1} B$ **M14-Problem** if AX+CX=B Calculate X. **Solution:** AX+CX=B [A+C]X=B Multiply both sides by A+C]^{-1} [A+C]^{-1} [A+C] X = [A+C]^{-1} B I X = [A+C]^{-1} B X = [A+C]^{-1} B

M15-Comment $[A+B]^{-1} \neq A^{-1}+B^{-1}$

M16-Problem if AX+CX=B Calculate X. Solution AX+CX=B [A+C]X=BMultiply both sides by $A+C]^{-1}$ $[A+C]^{-1}$ $[A+C] X = [A+C]^{-1} B$ $I X= [A+C]^{-1} B$ $X= [A+C]^{-1} B$

M18-Problem: AX+XC=B **Solution** No direct solution exists