MATRIX APPLICATIONS

ELECTRICAL CIRCUIT ANALYSIS Seri RLC devresi (zorlanmis)

V_1	Ia H		Ib ₩ Rc		V_2
$-R_cI_c$ $-V_1+$	$a^{c} - R_{b}I_{b}$	$R_c I_c = 0$ $+ V_2 = 0$ $R_b I_b + V$ 0	0		
$\begin{bmatrix} R_a \\ 0 \\ R_a \\ 1 \end{bmatrix}$	$0 \\ -R_b \\ -R_b \\ 1$	$\begin{bmatrix} R_c \\ -R_c \\ 0 \\ -1 \end{bmatrix}$	$\begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$	$\begin{bmatrix} V_1 \\ -V_2 \\ V_1 - V_2 \\ 0 \end{bmatrix}$	

$$\begin{bmatrix} R_a & 0 & R_c & V_1 \\ 0 & -R_b & -R_c & -V_2 \\ R_a & -R_b & 0 & V_1 - V_2 \\ 1 & 1 & -1 & 0 \end{bmatrix}$$

 $-R_{1} + R_{3} \Rightarrow R_{3}, \qquad -\frac{1}{R_{a}}R_{1} + R_{4} \Rightarrow R_{4}$ $\begin{bmatrix} R_{a} & 0 & R_{c} & V_{1} \\ 0 & -R_{b} & -R_{c} & -V_{2} \\ 0 & -R_{b} & -R_{c} & -V_{2} \\ 0 & 1 & -\frac{R_{c}}{R_{a}} - 1 & -\frac{R_{c}}{R_{a}}V_{1} \end{bmatrix}$ $-R_{2} + R_{3} \Rightarrow R_{3}$

 $\begin{bmatrix} R_{a} & 0 & R_{c} & V_{1} \\ 0 & -R_{b} & -R_{c} & -V_{2} \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -\frac{R_{c}}{R_{a}} - 1 & -\frac{R_{c}}{R_{a}} V_{1} \end{bmatrix}$ Exchange row 2 and row 3 $\begin{bmatrix} R_{a} & 0 & R_{c} & V_{1} \\ 0 & -R_{b} & -R_{c} & -V_{2} \\ 0 & 1 & -\frac{R_{c}}{R_{a}} - 1 & -\frac{R_{c}}{R_{a}} V_{1} \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\frac{1}{R_{b}} R_{2} + R_{3} \Rightarrow R_{3},$ $\begin{bmatrix} R_{a} & 0 & R_{c} & V_{1} \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\frac{1}{R_{b}} R_{2} + R_{3} \Rightarrow R_{3},$ $\begin{bmatrix} R_{a} & 0 & R_{c} & V_{1} \\ 0 & -R_{b} & -R_{c} & -V_{2} \\ 0 & 0 & -\frac{1}{R_{b}} R_{c} - \frac{R_{c}}{R_{a}} - 1 & -\frac{1}{R_{b}} V_{2} - \frac{R_{c}}{R_{a}} V_{1} \\ 0 & 0 & 0 & 0 \end{bmatrix}$ rank A=rank $\stackrel{\frown}{A} = 3$, unique solution. (number of unknown is 3, Ia,Ib,Ic)

$$R_{b}I_{b} + R_{c}I_{c} - R_{a}I_{a} = 0$$

- V₁ + R_cI_c + R_dI_d = 0
R_dI_d - R_cI_c + V₂ = 0
- V₁ + R_aI_a - R_dI_d = 0

