Analytical Methods in Engineering (EE300) Major 1 Computer ID 3) Examine the following equation systems

1)Examine the following price list

Apple (kg)	Orange (kg)	Pear (kg)	Total Price (SR)
2	2	0	4
0	5	6	15
2	7	6	19

- a) Write the necessary equations in matrix form.b) Examine the existence of solution. (unique
- solution, multiple solution, no solution)

 $\begin{bmatrix} 2 & 2 & 0 \\ 0 & 5 & 6 \\ 2 & 7 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 15 \\ 19 \\ 19 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 0 & 4 \\ 0 & 5 & 6 & 15 \\ 2 & 7 & 6 & 19 \end{bmatrix} \xrightarrow{-R_{1}R_{3} \to R_{3}} \begin{bmatrix} 2 & 2 & 0 & 4 \\ 0 & 5 & 6 & 15 \\ 0 & 5 & 6 & 15 \end{bmatrix}$ $-R_{2} + R_{3} \to R_{3} \begin{bmatrix} 2 & 2 & 0 & 4 \\ 0 & 5 & 6 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $-R_{2} + R_{3} \to R_{3} \begin{bmatrix} 2 & 2 & 0 & 4 \\ 0 & 5 & 6 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 0 & 4 \\ 0 & 5 & 6 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 0 & 4 \\ 0 & 5 & 6 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 2 & R_{1} + R_{3} \to R_{3} \\ 0 & S & 6 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 2 & R_{1} + R_{3} \to R_{3} \\ 0 & S & 6 & 15 \end{bmatrix}$

2) It is known that the vectors X,Y are linearly dependent. Calculate p, q.

 $X = \begin{bmatrix} p \\ 0.7 \\ 3 \end{bmatrix}, \quad Y = \begin{bmatrix} 2.5 \\ 7 \\ q \end{bmatrix},$ $U = \checkmark \qquad 2.5 = \checkmark P$ $T = \checkmark 0.7 \Rightarrow \checkmark = 10$ $Q = \checkmark 3$

0

«P:

= 2.5
$$P = \frac{2.5}{\alpha} = 0.2$$

5

9= 3x = 3×10=30

[3	2	4	x x		0	
9	6	12	y	=	0	
1.5	1	4 12 2	z		0	Statute and

a)Find two nontrivial solutions for this system b)How many independent nontrivial solutions does this system have.

Dr. Romazen

 $\begin{bmatrix} 3 & 2 & 4 \\ 9 & 6 & 12 \\ 1.5 & 1 & 2 \end{bmatrix} - \frac{1}{2}R_{1} + R_{3} \rightarrow R_{3} \begin{bmatrix} 3 & 2 & 4 \\ 0 & 0 & 0 \\ -\frac{1}{2}R_{1} + R_{3} \rightarrow R_{3} \end{bmatrix} \begin{bmatrix} 3 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $n = 3 \quad renk \quad A = 1 = r$ $n - r = 3 - 1 = 2 \quad non \ trivial \quad solution$ $solution \quad 1 \qquad \forall = 0 \quad \forall = 1$ $3 \times + 2y + 4z = 0 \qquad 3 \times 0 + 2x 1 + 4z = 0$ 4z = -2 z = -0.5

Solution 2 x=1 y=0 3x1 + 2x0 + 4x = 0 $4z = -3 = \frac{3}{4}$

 Calculate the inverse of the following matrix by Gaus iteration Method.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 6 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{P_2} R_2$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & | & 0 & 0 \\ 0 & 0 & 0 & | & 0 & 0 & 0 \\ 0 & 0 & 0 & | & 0 & 0 & 0 \\ 0 & 0 & 0 & | & -6 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & -6 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & -6 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & -6 & 0 & 0 \\ 0 & 0 & 0 & | & -6 & 0 & 0 \\ 0 & 0 & 0 & | & -6 & 0 & 0 \\ 0 & 0 & 0 & | & -6 & 0 & 0 \\ 0 & 0 & 0 & | & -6 & 0 & 0 \\ 0 & 0 & 0 & | & -6 & 0 & 0 \\ \end{bmatrix}$$

5)Examine the following equation systems a,b,c are any number.

[2	a	200	$\int x^{-1}$		4	
0	4	с	y	=	4	
0	8	2c	z		0	

State true or false.

$$\begin{array}{c} 2 & a & b & 4 \\ 0 & 4 & c & 4 \\ 0 & 8 & 2c & 0 \end{array} \right) - 2R_2 + R_3 \rightarrow R_3 \\ 0 & 8 & 2c & 0 \end{array}$$

$$\begin{array}{c} 0 & a & b & 4 \\ 0 & a & b & 4 \\ 0 & 4 & c & 4 \\ 0 & 0 & 0 & -8 \end{array}$$

$$\begin{array}{c} 0 & n \\ ronk \\ \overline{A} = 3 \\ ronk \\ \overline{A} = 3 \end{array}$$

6) A,B,C,D,X are all matrices in the following equations. A,B,C,D are known matrices and X is unknown matrix. Obtain X from each matrix equation.

a) AX+BAX=CX+DAb) XAB+XB+CA=A+XB

c) AX+X=B

a)
$$A \times + B A \times - C \times = D A$$

 $[A + B A - C] \times = D A$
 $X = [A + B A - C]^{-1} D A$
b) $X [A B + B - B] = A - C A$
 $X = [A - C A] [A B]^{-1}$
c) $A \times + \times = B$
 $[A + S] \times = B$

71

7) Examine the following linear equation systems A is any number.

$$x + y = 3$$

 $4x+4 = 4$

State true or false

a)The system has multiple solution if A=12 b)The system has always unique solution c)Whatever the value of A is,

The system has multiple solution

È....

T

d)The system has no solution if A≠12

$$\begin{bmatrix} 1 & 3 \\ 4 & 4 \end{bmatrix} -4R_1 + R_2 \rightarrow R_2 \\ \begin{bmatrix} 1 & 1 & 3 \\ 0 & 0 & A - 12 \end{bmatrix}$$

8) a) Calculate X from the following matrix equation. A,B,C,X, are matrices

AX+BX=C b) Calculate X if $A = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix}, B = \begin{bmatrix} 3 & 5 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 16 \\ 6 \end{bmatrix}$ $(A+B) \times = C$ X = [A+0] - 1 < $X = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix} + \begin{bmatrix} 3 & 7 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 6 \end{bmatrix}$ $= \begin{bmatrix} 5 & 6 \end{bmatrix}^{-1} \begin{bmatrix} 16 \\ 6 \end{bmatrix}$ $\begin{bmatrix} a & b \end{bmatrix}^{-1} = \begin{bmatrix} d & -b \end{bmatrix} \frac{1}{-c} = \begin{bmatrix} d$ $\begin{bmatrix} 5 & 6 \end{bmatrix}^{-1} = \begin{bmatrix} 6 & -6 \\ -5 & 5 \end{bmatrix}^{-1}$ $x = \frac{1}{30} \begin{bmatrix} 6 & -6 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 16 \\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

9)Examine the following equation systems a,b are any nonzero number. (a≠0, b≠0)

$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 1 & 3 \\ 0 & 8 & 2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} a \\ b \\ 2b \end{bmatrix}$$

State true or false.

$$\begin{bmatrix} 4 & 0 & 0 & 9 \\ 0 & 4 & 1 & 3 & b \\ 0 & 8 & 2 & 6 & 2b \end{bmatrix}$$

$$\begin{bmatrix} 4 & 0 & 0 & 9 \\ 0 & 4 & 1 & 3 & b \\ 0 & 4 & 1 & 3 & b \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & nk & A = 2 \\ 0 & nk & A = 2 \\ n = 3 \end{bmatrix}$$

10)Find the rank of the following matrices

	0	0	0		1	0	0		
A=	25	25	55	, E	8= 0	1	0		
	0	0	0	, E	1	0	0		
									1
C=	4	4	4	4	D=	3	3	6	
	1.5	1.5	1.5	1.5		4	4	12	
				2 4 1.5					

Rank A=1 Rank B=2 Rank C= | Rank D= 2

$$11)x = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}, y = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, z = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

x and y are linearly \underline{DeP} x and z are linearly \underline{hod} y and z are linearly \underline{hod}

12) The linearly independent vectors X,Y,Z and matrices P,Q are given as follows

a d	[g] [adg] [abc]
X=b, $Y=e$, $Z=$	$\begin{bmatrix} g \\ h \\ k \end{bmatrix}, P = \begin{bmatrix} a & d & g \\ b & c & h \\ c & f & k \end{bmatrix}, Q = \begin{bmatrix} a & b & c \\ d & c & f \\ g & h & k \end{bmatrix}$
[c] [f]	[k] [cfk] [ghk]
State True or False	+ (7 7)
c) $P^T = Q$	(T: Transpose)
a) det P=0	
b) det $P = det Q$	T
d) $P=Q^T$	T
e) $P^{-1} = Q^{-1} \dots$	F
f) $P^{-1} = [Q^{-1}]^T$	\top
g) $P^{-1} = [Q^T]^{-1}$	T

13) The linearly dependent vectors X,Y,Z are given as follows

$$\mathbf{X} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{bmatrix}, \ \mathbf{Y} = \begin{bmatrix} \mathbf{d} \\ \mathbf{e} \\ \mathbf{f} \end{bmatrix}, \ \mathbf{Z} = \begin{bmatrix} \mathbf{g} \\ \mathbf{h} \\ \mathbf{k} \end{bmatrix},$$

b)
$$P^{-1}$$
 existsF...

c) The vectors M,N,Pare linearly dependent....

Dr Roma 201

d) rank P=3 \dots