Analytical Methods in Engineering (EE300) Major1 Computer ID

1)Examine the following price list

Apple (kg)	Orange (kg)	Pear (kg)	Total Price (SR)		
1	2	0	4		
0	3	6	15		
2	7 .	6	27		
Constant of the	1040				

- a) Write the necessary equations in matrix form.
- b) Examine the existence of solution. (unique solution, multiple solution, no solution)

 $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 6 \\ 2 & 7 & 6 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 15 \\ 24 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 3 & 6 & 15 \\ 27 & 6 & 27 \end{bmatrix} - 2R_1 + R_3 \rightarrow R_3$ $\begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 3 & 6 & 15 \\ 27 & 6 & 27 \end{bmatrix} - R_2 + R_3 \rightarrow R_3$ $\begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 3 & 6 & 15 \\ 0 & 3 & 6 & 15 \\ 0 & 3 & 6 & 15 \end{bmatrix} - R_2 + R_3 \rightarrow R_3$ $\begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 3 & 6 & 15 \\ 0 & 3 & 6 & 15 \\ 0 & 0 & 0 & 4 \end{bmatrix}$ $\boxed{ \begin{array}{c} ronk \ A = 2 \\ ronk \ A = 2 \\ N = 3 \end{array}}$ $No \ Solution$

2) It is known that the vectors X,Y are linearly dependent. Calculate p, q.

- 100 C 100	A CONTRACTOR OF A CONTRACTOR			
-		1 C 11	anuation	austana
31	Evamine	the following	equation	Systems

[2	3	4	5	[x]		0	
6	9	12	15	y		0	
1	1.5	2	2.5	z	=	0	
4	6	8	10	w		0	

a)Find two nontrivial solutions for this system b)How many independent nontrivial solutions does this system have.

$$\begin{bmatrix} 2 & 3 & 4 & 5 \\ 6 & 9 & 12 & 15 \\ 1 & 1.5 & 2 & 2.5 \\ 4 & 6 & 8 & 10 \end{bmatrix} \xrightarrow{-3R_1+R_2 \rightarrow R_2} \xrightarrow{-\frac{1}{2}R_1+R_3 \rightarrow R_3} \xrightarrow{-2R_1+R_3 \rightarrow R_4} \xrightarrow{-2R_1+R_2 \rightarrow R_4} \xrightarrow{-2R_1$$

Dr

R

5) A,B,C,D,X are all matrices in the following equations. A,B,C,D are known matrices and X is unknown matrix. Obtain X from each matrix equation.

a) XAB+XB+CA=A+XB

- b) AX+BAX=CX+DA
- c) XA+X=B

a)
$$xAB + xB + xB = A - cA$$

 $x [AB + B - B] = A - cA$
 $X = [A - cA] [AB] - 1$
b) $A + BA + CX = DA$
 $[A + BA - c] \times = DA$
 $X = [A + BA - c]^{-1} DA$
c) $x [A + T] = B$ $x = B[A + T]^{-1}$

6)Examine the following equation systems a,b,c are any number.

2 a b x0 8 2c z

State true or false.

a) This system may have multiple solution false c)We cannot say anything unless we know the false values of a,b,c

$$\begin{bmatrix} 2 & 0 & 4 \\ 0 & 4 & C & 4 \\ 0 & 8 & 2 & C & 0 \end{bmatrix} - 2R_1 + R_3 \rightarrow R_3$$

$$\begin{bmatrix} 2 & 4 & C & 4 \\ 0 & 4 & C & 4 \\ 0 & 0 & 0 & -8 \end{bmatrix}$$

7)Examine the following equation systems a,b are any **nonzero** number. ($a\neq 0$, $b\neq 0$)

$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 1 & 3 \\ 0 & 8 & 2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} a \\ b \\ 2b \end{bmatrix}$$

State true or false. Falle b)This system has multiple solution a)This system has no solution c)We cannot say anything unless we know the exact values of a and b false

8)Find the rank of the following matrices

1

	2	2	2	2		1	1	2]	
A=	4	4	4	4	B=	3	3	6	
	1.5	1.5	1.5	1.5	B=	4	4	12	
$C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	0	0 ,	D=	25	25	55	,		
]	0	0		0	0	0			
Rank	A=	L Ra	nk B	=2 R	ank C	<u></u>	Ī	Rank	D= 1

9) $\mathbf{x} = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{z} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ x and y are linearly $\frac{\partial e}{\partial a'}$ y and z are linearly $\frac{\partial e}{\partial a'}$

Dr Ramazon

10) The linearly independent vectors X,Y,Z and matrices P,Q are given as follows

$$X = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, Y = \begin{bmatrix} d \\ e \\ f \end{bmatrix}, Z = \begin{bmatrix} g \\ h \\ k \end{bmatrix}, P = \begin{bmatrix} a & d & g \\ b & c & h \\ c & f & k \end{bmatrix}, Q = \begin{bmatrix} a & b & c \\ d & c & f \\ g & h & k \end{bmatrix}$$

State True or False
a) det P=0 ...fiels(
b) det P = det Q ...fiels(
c) P^T=Q ...fiels(
d) P=Q^T ...fiels(
f) P⁻¹ = [Q⁻¹]^T True
g) P⁻¹ = [Q^T]⁻¹ True

11) The linearly dependent vectors X,Y,Z are given as follows

a d g X = |b|, Y = |e|, Z = |h|f k c

The matrix Q and vectors M,N,D are given below

 $\begin{bmatrix} a & d & g \end{bmatrix}$ $M = \begin{bmatrix} a & d & g \end{bmatrix}$ $N = \begin{bmatrix} b & e & h \end{bmatrix}$ P=|beh|, $\Phi = \begin{bmatrix} c & f & k \end{bmatrix}$ c f k

State True or False

a) det P=0 True b) P⁻¹ exists falle

- c) The vectors M,N,Dare linearly dependent....Tr~

12) Examine the following linear equation systems A is any number.

$$x + y = 5$$

3x+3y = A

- a) The system has unique solution b) Whatever the value of A is,
 - The system has multiple solution $\frac{false}{1 + 5} = \frac{1 + 5}{0 + 15}$

Irue c)The system has multiple solution if A=15

d)The system has no solution if $A \neq 15$

True

13) a) Calculate X from the following matrix equation. A,B,C,X, are matrices

AX+BX=C
b) Calculate X if
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix}, B = \begin{bmatrix} 3 & 5 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 16 \\ 6 \end{bmatrix}$$
$$\begin{bmatrix} A + 6 \end{bmatrix} \times = C$$
$$\neq = \begin{bmatrix} A + 6 \end{bmatrix}^{-1} \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 6 \\ 0 & 6 \end{bmatrix}^{-1} \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 6 \\ -c & q \end{bmatrix}^{-1} \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 6 \\ -c & q \end{bmatrix} = \frac{1}{ab - bc} \begin{bmatrix} d & -b \\ -c & q \end{bmatrix}$$
$$\begin{bmatrix} 5 & 6 \\ 0 & 6 \end{bmatrix} = \frac{1}{30} \begin{bmatrix} 6 & -6 \\ -c & q \end{bmatrix}$$
$$= \frac{1}{30} \begin{bmatrix} 6 & -6 \\ -c & 5 \end{bmatrix}$$
$$\times = \frac{1}{30} \begin{bmatrix} 6 & -6 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 7 \\ 6 \end{bmatrix} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$$